Дискуссионный клуб

УДК 550.83

Р. А. Валиуллин
Башкирский государственный университет
Н. Г. Козыряцкий
ООО «Нефтегазгеофизика»
В. М. Лобанков
Уфимский ГНТУ

СТАНДАРТИЗАЦИЯ В ОБЛАСТИ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ И РАБОТ В СКВАЖИНАХ. СОСТОЯНИЕ И ПЕРСПЕКТИВЫ

Сделана попытка анализа состояния стандартизации геофизической продукции и услуг; рассмотрены основополагающие принципы, цели и задачи создания Системы стандартизации в области геофизических исследований и работ в скважинах на основе стандартов АИС, а также методология и организация работ по стандартизации геофизической продукции и услуг.

Ключевые слова: геофизика, скважина, стандартизация, методология, метрологическое обеспечение.

Создание и развитие Системы стандартизации в области геофизических исследований и работ в скважинах (ГИРС) на основе стандартов Международной Ассоциации научно-технического и делового сотрудничества по геофизическим исследованиям и работам в скважинах — стандарты АИС (СТО АИС) — давно назревшая проблема. О низком уровне существующей системы стандартизации в области ГИРС и необходимости ее совершенствования на основе корпоративной системы стандартизации в рамках международной АИС было высказано Н. Г. Козыряцким еще в 2010 г. [6]. Он предложил расширить путь к достижению наиболее полного взаимопонимания между заказчиками и подрядчиками геофизических услуг через систему взаимосогласованных стандартов. Рассмотрим эти вопросы и приглашаем наших читателей к их обсуждению.

Состояние стандартизации геофизической продукции и услуг

Основной продукцией ГИРС является измерительная геологогеофизическая информация. Стандартизация в области ГИРС (в дальнейшем – стандартизация) призвана обеспечить баланс интересов государства, нефтяных и геофизических компаний, научных и общественных организаций, работающих в области ГИРС, повысить конкурентоспособность отечественной геофизической техники, создать условия для повышения качества геофизической информации, работ и услуг при геологическом изучении, использовании и охране недр. Платные геофизические услуги нефтяным и газовым компаниям должны оказываться на договорных условиях в соответствии со стандартными методиками, согласованными с исполнителями и заказчиками этих услуг.

Законодательную основу стандартизации составляют федеральные законы [8–12]. Нормативную основу стандартизации составляют действующие межгосударственные (ГОСТ) и национальные (ГОСТ Р) стандарты, стандарты организаций, своды правил и др.

Объектами стандартизации являются общие организационно-технические положения, термины и определения, методики скважинных измерений, скважинная измерительная техника, геофизическое оборудование, метрологическое обеспечение ГИС. Деятельность по стандартизации должна обеспечивать установление унифицированных норм и правил, направленных на эффективное и безопасное проведение ГИРС [12].

Первый государственный стандарт СССР в области ГИРС – ГОСТ 22609-77 «Геофизические исследования в скважинах. Термины, определения, буквенные обозначения» [1] с 1977 г. регламентировал терминологию. С развитием науки терминология быстро устаревает, меняется и в дополнение к действующему ГОСТу [1] был создан ГОСТ Р 54362-2011 «Геофизические исследования скважин. Термины и определения» [5], что усложнило понимание ГИРС из-за разной трактовки геофизических терминов.

В сфере геофизического приборостроения действует ГОСТ 26116-84 «Аппаратура геофизическая скважинная. Общие технические условия» [2]. Он регламентирует общие требования к аппаратуре и методы испытаний при ее сертификации. Данный стандарт не отвечает

современному состоянию геофизического приборостроения и также требует новой редакции.

Стандарт ГОСТ Р 53709-2009 «Скважины нефтяные и газовые. Геофизические исследования и работы в скважинах. Общие требования» [4] является ключевым в области ГИРС. Он в значительной степени регламентирует классификацию методов исследований, требования к составу и условиям проведения ГИРС в опорных, параметрических, структурных, поисковых, оценочных, разведочных и эксплуатационных скважинах при решении геологических и технических задач на нефтегазовых месторождениях. Стандарт регламентирует также взаимодействие заказчика и исполнителя геофизических услуг, включая требования к подготовке скважины, к объемам и качеству ГИРС, соблюдению правил безопасности и охраны недр, к действиям при авариях. Однако требования в нем носят слишком общий характер и не содержат каких-либо числовых показателей, весьма поверхностно обозначены измерительные задачи ГИРС и метрологическая деятельность геофизической компании. Например, сказано, что «калибровка должна выполняться в соответствии с действующей нормативной документацией», «организация – исполнитель ГИРС должна иметь метрологическую службу, отвечающую требованиям Федерального закона № 102-ФЗ «Об обеспечении единства измерений». Следовательно, требуется дальнейшая конкретизация положений ГОСТ Р 53709 и создание дополнительного комплекса недостающих нормативных документов (НД).

Отраслевые стандарты СССР устарели, многие из них утратили свою актуальность и не могут далее существовать как самостоятельные НД.

Стандарты ЕАГО, регламентирующие требования к аппаратуре ГИРС и методам ее испытаний, созданы более 15 лет тому назад и также требуют творческой переработки.

Из проведенного анализа состояния стандартизации в области ГИРС следует, что лишь частично регламентированы самые общие организационно-технические требования, отражающие взаимодействия заказчика и исполнителя геофизических услуг, а также некоторые требования к испытаниям и метрологическому обеспечению скважинной геофизической аппаратуры. Дополнительно потребуется разработка понятных для заказчика стандартных методик измерений параметров пластов и скважин с использованием скважинной

аппаратуры с указанием эталонов, используемых для калибровки скважинной аппаратуры, и геолого-технических ограничений применимости этих методик.

Цели и задачи стандартизации в области ГИРС

Система стандартов должна состоять из групп, объединенных общностью целей и задач, определяемых объектами стандартизации.

Целью стандартизации в области ГИРС является обеспечение выполнения положений федеральных законов [8—11] в части достижения упорядоченности и поддержания единства в сфере производства и обращения геофизической продукции, установления характеристик этой продукции, правил выполнения ГИРС и оказания геофизических услуг мирового уровня.

Основной задачей стандартизации является установление требований по обеспечению единства и требуемой точности скважинных и геолого-технологических измерений в соответствии с [9], прогрессивных требований к методам и средствам скважинных и геолого-технологических измерений, а также к методам и средствам лабораторных измерений параметров керна, шлама и флюидов. Для решения указанных задач объекты стандартизации предлагается разделить на следующие классификационные группы:

- 1. Общетехнические и организационно-методические положения.
- 2. Измерительная и метрологическая деятельность в области ГИРС.
- 3. Техническое оснащение и программное обеспечение ГИРС.
- 4. Требования к показателям качества ГИРС и методам их контроля.
- 5. Требования к технической компетентности организаций, выполняющих ГИРС.

Принципы стандартизации ГИРС

Стандартизация ГИРС должна осуществляться на основе следующих принципов: 1) добровольность применения стандартов; 2) достижение консенсуса при их разработке; 3) установление требований с учетом достижений геофизической науки и техники, для обеспечения возможности контроля выполнения ГИРС; 4) четкость и ясность изложения, а также обеспечение однозначности понимания

их требований; 5) недопустимость создания препятствий выполнению работ и оказанию геофизических услуг; 6) доступность представления информации по стандартам заказчикам и исполнителям услуг.

Стандарты АИС применяют на добровольной основе. Обязательность соблюдения стандартов наступает при прямом указании на это в действующем законодательстве, договорах, контрактах, правомерно принятых нормативных документах федеральными органами исполнительной власти или предприятий любых форм собственности.

Ссылки на стандарты АИС и созданные на их основе национальные стандарты (ГОСТ Р) могут быть предусмотрены в коммерческих контрактах и договорах на геофизические услуги. В таком случае требования стандартов становятся обязательными, что может существенно снизить уровень взаимных претензий заказчиков и исполнителей услуг.

Стандартизация измерительной деятельности геофизической компании

Геофизические исследования в скважинах базируются на измерениях параметров пластов и скважин с использованием скважинной геофизической измерительной техники и технологических датчиков процесса бурения, а также на лабораторных измерениях параметров образцов керна, шлама, бурового раствора и пластовых флюидов.

Для каждого измеряемого параметра пласта, скважины и процесса бурения должно быть сформулировано его стандартное словесное определение. В соответствии с принятым определением должна быть построена стандартная методика измерений этого параметра, регламентированная утвержденным нормативным документом, например, СТО АИС или ГОСТ Р.

Для реализации стандартной методики скважинных измерений в соответствии с утвержденным стандартом должна быть предусмотрена стандартная сертифицированная скважинная измерительная техника, имеющая стандартный набор калибровочных и поправочных функций.

В руководстве по эксплуатации скважинной геофизической аппаратуры должны быть описаны все процедуры получения и регистрации ее первичных показаний и четко обозначены все типовые (стандартные) геолого-технические условия, для которых регламентированы

показатели точности и ограничения применимости стандартной методики измерений.

В стандартной методике скважинных измерений любого параметра пласта и скважины должен быть предусмотрен раздел распознавания реальной структуры исследуемого пространства (геолого-технической ситуации) в скважине с оценкой степени ее отличия от принятой в методике типовой структуры среды.

В итоге, реализации стандартной методики измерений для каждой типовой геолого-технической ситуации должны быть получены (с учетом всех известных поправок) как измеренное значение параметра пласта или скважины, так и оценка погрешности выполненных измерений с указанием вероятности попадания истинного значения измеряемой величины в принятый для него интервал.

Нормирование метрологических характеристик геофизической измерительной техники должно быть выполнено в соответствии с [3].

Стандартное программное обеспечение измерительной деятельности компании следует создавать на основании общепринятых аттестованных стандартных методик скважинных измерений параметров пластов и скважин.

Как отмечалось выше, основной действующий стандарт на геофизическую технику ГОСТ 26116-84 [2] не отвечает современным требованиям и подлежит обновлению с учетом достижений современного геофизического приборостроения и метрологии. Необходимо более обоснованно и четко выразить и регламентировать общие для всех видов и типов скважинной аппаратуры стандартные требования и однозначные методы испытаний. На основе этого обновленного стандарта может проводиться сертификация скважинной геофизической аппаратуры и оборудования в Системе сертификации ГОСТ Р (или в другой национальной системе), что позволит обеспечить международное признание российских сертификатов подтверждения соответствия и возможность российским компаниям конкурировать на мировом рынке геофизических услуг.

На основе действующих стандартов ЕАГО на методы испытаний отдельных видов геофизической аппаратуры возможна разработка стандартов СТО АИС с последующим их преобразованием в национальные стандарты ГОСТ Р. Также целесообразно обновить терминологию в области ГИРС, изыскать возможность объединения государственных стандартов [1] и [5].

Стандартизация метрологической деятельности геофизической компании

Метрологическая деятельность геофизической компании является неотъемлемой частью ее работы при оказании геофизических измерительных услуг. Она связана с эксплуатацией собственных эталонов для построения калибровочных и поправочных функций имеющейся в компании скважинной аппаратуры и с калибровкой собственной аппаратуры с использованием эталонов сторонних организаций. Для осуществления такой деятельности создается метрологическая служба компании, ответственная за обеспечение единства геофизических измерений и гарантию требуемых показателей точности выполняемых для заказчика измерений с использованием эксплуатируемой в компании геофизической измерительной техники. Эта служба отслеживает стабильность во времени стандартной калибровочной функции скважинной аппаратуры и осуществляет периодическую передачу единиц геофизических величин от эталонов индивидуально градуируемой скважинной аппаратуре. Область технической компетентности метрологической службы и геофизической компании в целом определяется наличием необходимых эталонов, воспроизводящих единицы геофизических величин. Подтверждение технической компетентности метрологической службы геофизической компании на соответствие требованиям международного стандарта ГОСТ Р ИСО/ МЭК 17025-2006 [6] осуществляется путем анализа ее деятельности независимой экспертной организацией и регистрацией в Российской системе калибровки или в Росаккредитации.

Система метрологического обеспечения измерений в геофизических компаниях предусматривает установление и применение научных и организационных основ, технических средств, норм и правил, необходимых для достижения единства и требуемой точности выполняемых геофизических измерений.

Стандартизация метрологической деятельности геофизической компании заключается в применении стандартных эталонов единиц геофизических величин, стандартных методик передачи единиц измеряемых величин геофизической измерительной технике (методик калибровки скважинной аппаратуры), калибровочных и поверочных схем.

Эталоны на основе стандартных образцов (СО) состава и свойств горных пород, пересеченных скважиной, должны иметь государс-

твенный статус и быть изготовлены (приготовлены) и калиброваны в соответствии с аттестованными методиками измерений, внесенными в государственный реестр. Специалисты, принимающие участие в приготовлении и аттестации эталонов на основе СО, должны быть аттестованы на техническую компетентность.

К стандартизации метрологической деятельности относится также создание и ведение реестра рабочих эталонов единиц геофизических величин, применяемых научными и производственными геофизическими компаниями.

Методология и организация работ по стандартизации

Общие принципы и процедуры стандартизации в области ГИРС изложены в основополагающих документах, указанных выше.

Основным плановым документом АИС по стандартизации является «Программа стандартизации геофизических исследований и работ в скважинах», которая должна формироваться заинтересованными геофизическими компаниями, корректироваться и приниматься на ежегодном собрании членов АИС. В программу стандартизации могут включаться действующие в отдельных геофизических компаниях стандарты организации.

Обсуждение проектов СТО АИС в геофизических компаниях организуют службы стандартизации и (или) метрологические службы. К обсуждению должны привлекаться квалифицированные кадры НИИ, КБ геофизических предприятий, компетентные в области повышения качества и безопасности ГИРС, что позволит создавать качественные стандарты АИС, полнее отражать в них современные научно-технические достижения и повысить конкурентоспособность геофизической техники на мировом рынке.

При разработке новых стандартов АИС необходимо использовать богатейший научно-технический потенциал ранее разработанных отраслевых стандартов, стандартов ЕАГО и геофизических предприятий.

Для эффективной координации работ по стандартизации необходимо создание при АИС соответствующего подразделения (центра, комитета, департамента или др.), необходимо также образовать экспертный совет из ведущих специалистов в области ГИРС, призванный обеспечить разработку стандартов АИС высокого научнотехнического уровня.

ЛИТЕРАТУРА

- 1. ГОСТ 22609-77. Геофизические исследования в скважинах. Термины, определения, буквенные обозначения.
- ГОСТ 26116-84. Аппаратура геофизическая скважинная. Общие технические условия.
- 3. ГОСТ 8.009-84 ГСИ. Нормируемые метрологические характеристики средств измерений.
- 4. ГОСТ Р 53709-2009. Скважины нефтяные и газовые. Геофизические исследования и работы в скважинах. Общие требования.
- ГОСТ Р 54362-2011. Геофизические исследования скважин. Термины и определения.
- 6. ГОСТ Р ИСО/МЭК 17025-2006. Требования к технической компетентности испытательных и калибровочных лабораторий.
- 7. *Козыряцкий Н. Г.* Возможность создания Системы корпоративной стандартизации в рамках Международной «АИС» // НТВ «Каротажник». Тверь: Изд. АИС. 2010. Вып. 7 (196). С. 120–125.
- 8. Федеральный закон «Об информации, информационных технологиях и о защите информации» от 27 июля 2006 г. № 149-ФЗ.
- 9. Федеральный закон «О недрах» от 21 февраля 1992 г. № 2395-I.
- 10. Федеральный закон «Об обеспечении единства измерений» от 26 июня 2008 г. № 102-ФЗ.
- 11. Федеральный закон «О техническом регулировании» от 27 декабря 2002 г. № 184-ФЗ.
- 12. Федеральный закон «О стандартизации в Российской Федерации» от 29 июня 2015 г. N 162-ФЗ.
- 13. Широков В. Н., Лобанков В. М. Метрология, стандартизация, сертификация: Учебное пособие. М.: МАКС Пресс, 2008. 498 с.