Дискуссионный клуб

В. Ф. Козяр, Н. В. Козяр ООО «Нефтегазгеофизика»

ПРОДОЛЖЕНИЕ ДИСКУССИИ О ФИЗИЧЕСКИХ ПРОЦЕССАХ АКУСТИЧЕСКОЙ ЦЕМЕНТОМЕТРИИ ОБСАДНЫХ КОЛОНН

Рассмотрены два подхода к пониманию процессов, возникающих при акустической цементометрии обсадных колонн. Первый основан на классической теории распространения упругих волн, второй обязан физике Френеля-Био. Отдается дань первому и сформулированы вопросы к второму, решение которых поможет его восприятию.

Ключевые слова: цементометрия, акустические исследования, теории процессов классической физики и физики Френеля-Био.

Современное состояние проблемы

Технология акустической цементометрии (АКЦ) базируется на нескольких, казалось бы, незыблемых постулатах:

1. Незацементированная (свободная) обсадная колонна диаметром 127–245 $\mathit{мм}$, окруженная внутри и снаружи жидкостью, характеризуется постоянными скоростью ϑ_{κ} распространения ($\Delta t_{\kappa} = 1/\vartheta_{\kappa} = 183-185 \ \mathit{mkc/m}$) и затуханием ($\alpha_{\kappa} = 3-5 \ \partial \mathit{E/m}$) упругой волны и максимальными амплитудами A, которые регистрируются двухэлементными зондами, содержащими по одному излучателю и приемнику (ИП). На соединительных муфтах затухание волны увеличивается до 7–9 $\partial \mathit{E/m}$, а амплитуды уменьшаются на 20–30%. Это продольная волна Лэмба L_{κ} , скорость распространения которой составляет примерно 0,9 от скорости продольной волны в массиве железа. В терминологии АКЦ — волна по колонне.

- 2. Колонна, зацементированная нормальным цементом плотностью 1,8-1,9 c/cm^3 , в случае сплошного контакта с ней цементного камня имеет совершенно другие характеристики. Затухание волны увеличивается до 35-37 $\partial E/m$, для скважинных приборов до 30 $\partial E/m$ (так как невозможна передача по каротажному кабелю данных в большем динамическом диапазоне). Амплитуды А двухэлементных зондов, измеренные во временном промежутке, присущем волне по колонне, минимальные. Скорость распространения волны в колонне, если ее удается зарегистрировать, остается постоянной.
- 3. Возможны также все промежуточные состояния, включая частичный контакт цементного камня с обсадной колонной.
- 4. При полном затухании волны по колонне появление устойчивых колебаний какой-то другой волны приписывается волне по породе. Более чем в 90% случаев так оно и есть. Этим самым устанавливается сплошной контакт цементного камня с горными породами, составляющими стенку скважины.

Локальные дефекты цементирования колонн, меньшие длин измерительных зондов и обусловленные отсутствием механических контактов цементного камня с обсадной колонной в ограниченном интервале глубин, наличием пустот в цементном камне, плохим контактом цементного камня со стенкой скважины, не могут быть выявлены по данным АКЦ. Их необходимо устанавливать с помощью других измерительных акустических зондов, в первую очередь акустических сканеров, работающих на отраженных волнах с более высокой частотой, чем АКЦ.

Такое идиллическое восприятие проблемы установилось в производственных организациях в последние лет двадцать. Одновременно продолжались попытки усовершенствования перечисленных постулатов. Возникло два направления: одно из них, названное их авторами условно волноводной версией существующей методики, связано с выяснением физической сущности процессов, обуславливающих распространение упругой волны (продольной) в обсаженной скважине. Используются принципы классической физики. Другое направление — пересмотр существующих представлений о распространении упругих волн в многослойной системе «обсадная колонна—цементный камень—горная порода», опирающийся на теорию образования обобщенных волн в многослойной среде.

Волновая версия АКЦ

Свободная (незацементированная) обсадная колонна, окруженная с двух сторон жидкостью, служит волноводом для упругих волн. В ней, как в свернутой тонкой пластине, распространяются только нормальные волны, образованные отражениями колебаний внутри колонны от ее стенок. Количество отражений значительно растет с увеличением отношения $\omega h/\vartheta_S$, где ω – круговая частота; h – толщина пластины; ϑ_S – скорость распространения поперечной волны в веществе пластины (колонны).

При малых толщинах пластины ($\omega h/\vartheta_S << 1$, что характерно для обсадных колонн и частот АКЦ) в ней возможно распространение только двух нормальных волн нулевого порядка: продольной и изгибной. Изгибная волна низкочастотная и низкоскоростная. Ее скорость на порядки меньше скорости распространения продольной волны. Продольная (волна Лэмба) напоминает продольную волну в неограниченном пространстве [13]. В ней преобладает продольная компонента смещения, но вследствие свободных границ пластины появляется небольшое поперечное смещение, которое в $\vartheta_S/\omega h$ раз меньше продольного. По этой причине фазовая скорость ϑ_L распространения волны Лэмба ($L_{\rm K}$) меньше скорости продольной волны (ϑ_P) в неограниченном твердом теле и равна

$$\vartheta_L = \vartheta_P \sqrt{\frac{1-2\sigma}{(1-\sigma)^2}} ,$$

где о - коэффициент Пуассона.

Значения интервального времени, измеренные геофизическими приборами в колоннах диаметром 127–245 $\it mm$, окруженными с двух сторон жидкостью, равны 183–185 $\it mkc/m$. Затухание волны в колонне -3–5 $\it \partial E/m$.

Обсадная и бурильная колонны — довольно несовершенные волноводы вследствие наличия многочисленных резьбовых соединений (муфт, переводников и пр.), соединяющих звенья колонны. Тем не менее достаточно высокие волноводные свойства колонн доказаны передачей по бурильной колонне в процессе бурения данных о зенитном угле и азимуте ствола скважины с глубины $2500 \, M$ [2]. В пределах небольших глубин, протяженностью в несколько длин обсадных труб, колонну несомненно можно считать хорошим волноводом.

Цементирование колонны увеличивает импенданс вещества в затрубном пространстве последовательно: жидкий тампонажный раствор, его схватывание и переход в твердое состояние, набор прочности цементным камнем. Соответственно перечисленным этапам ухудшаются волноводные свойства обсадной колонны. Энергия волны Лэмба перетекает из колонны в цементный камень и далее в горную породу или в следующую обсадную колонну (техническую, кондуктор, направление) [1, 6]. На материалах АКЦ это отражается увеличением затухания ($\alpha_{\rm K}$) волны Лэмба в колонне. Максимально, при полном наборе цементным камнем прочности и его сплошном контакте с обсадной колонной, оно достигает значения 30 $\partial E/M$. Скорость распространения волны Лэмба в колонне остается постоянной до тех пор, пока ее еще можно измерить.

Энергия волны, ушедшая из колонны, возбуждает в породе (внешней колонне) упругие волны (P и S), которые регистрируются приборами АКЦ (рис. 1). Скорости распространения волн, возбужденных в породе

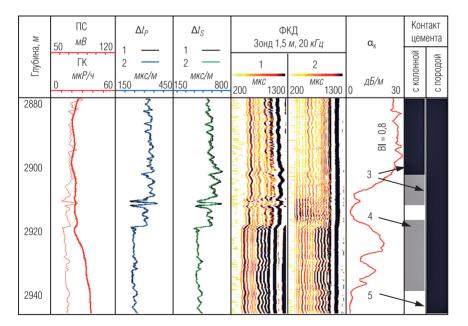


Рис. 1. Характеристики упругих волн в открытой (1) и обсаженной (2) скважине: 3–5 – контакт цемента с обсадной колонной и стенкой скважины: плотный, частичный, отсутствует

(внешней колонне), равны скоростям, измеренным в необсаженной скважине (или внешней колонне) с погрешностью приборов измерения. Последнее служит доказательством сплошного контакта цементного камня со стенкой скважины. Физическое объяснение этого заключается в следующем. В обсаженной скважине упругая волна, возбужденная излучателем в жидкости, достигает (после нескольких преломлений) стенок скважины и распространяется в породе или вдоль внешней колонны. Затем после тех же преломлений волна достигает приемника скважинного прибора, обеспечивая информацию о сплошности контактов на границах цементного камня с колонной и стенкой скважины либо об их отсутствии (разрывах сплошности контактов, включениях пузырьков жидкости или газа в цементе и др.).

В многоколонных конструкциях скважин при благоприятных обстоятельствах (все контакты цементного камня с колоннами частичные и сплошные) удается зафиксировать муфты, как экстремальные включения в колонну, одновременно от нескольких колонн (рис. 2). Этот факт служит одним из доказательств, что на коротких базах измерений, свойственных АКЦ, в многоколонных конструкциях не образуется какая-то обобщенная волна. Другим доказательством служит редко наблюдающаяся регистрация упругой волны, распространяющейся в слое цемента между обсадной колонной и стенкой скважины. Считается, что такой тонкий слой, расположенный среди более высокоскоростных сред, служит транзитом энергии от одной среды к другой либо участвует в образовании обобщенной волны. На практике ее удалось зарегистрировать зондами длиной 1,0-1,8 м в интервале каверны против глинистых отложений (рис. 3). На фазокорреляционных диаграммах (ФКД) более длинных зондов она не проявляется вследствие затухания в пористом цементном камне.

Другие доказательства отсутствия обобщенной волны на коротких базах измерений приведены в комментариях к рис. 5.

Следовательно, два постулата, а именно постоянство скорости распространения волны Лэмба в колонне и ее независимое распространение в отдельных колоннах многоколонных конструкций, создают благоприятные условия для оценки качества их цементирования. Для этого необходимо сравнить фактически измеренные значения времени прихода $t_{\rm K}$ волны к приемнику для любого двухэлементного зонда с расчетными значениями. Они будут разными для колонн различного назначения (кондуктор, технические и эксплуатационная колонны), так как включают двойные времена распространения волны от акус-

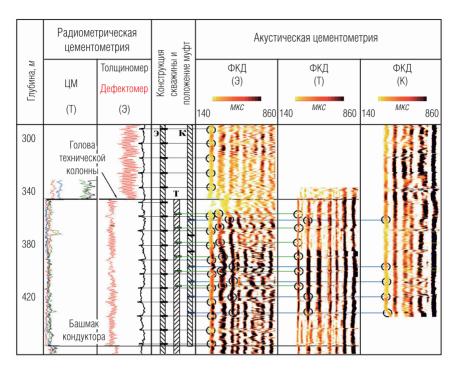


Рис. 2. Фиксация муфт кондуктора (К), технической (Т) и эксплуатационной (Э) колонн на фазокорреляционных диаграммах, зарегистрированных по мере строительства скважины [6]: в условиях частичных контактов цементного камня с обсадными колоннами на ФКД эксплуатационной и технической колонн хотя бы частично отражаются муфты ранее спущенных колонн

тического преобразователя к колонне и обратно в скважинах разных диаметров. Наглядно эта операция выполняется с использованием ФКД (рис. 4). Ее следовало бы ввести в алгоритм полуавтоматической интерпретации данных АКЦ.

Отсутствие сигналов между расчетными значениями для двух колонн свидетельствует о целиком заполненном межтрубном пространстве и сплошных контактах цементного камня со всеми внутренними колоннами. Количественная оценка качества цементирования выполняется по стандартной методике с тем лишь отличием, что началом временных диапазонов измерения затухания волны служат расчетные времена.

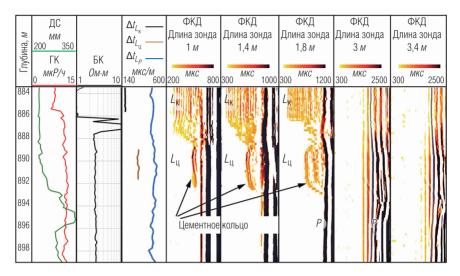
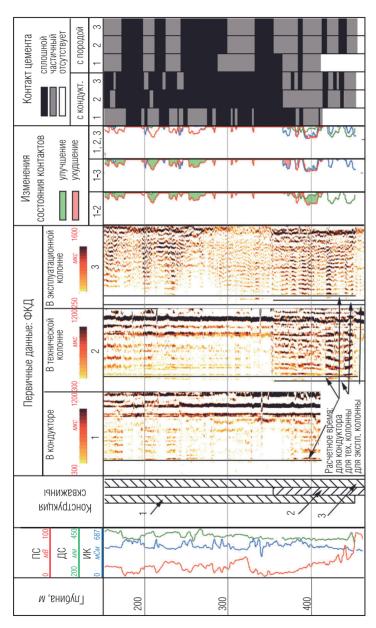



Рис. 3. Регистрация упругой волны, распространяющейся в цементном кольце между обсадной колонной и стенкой скважины: $L_{\rm K}$, $L_{\rm L}$ – волны Лэмба в обсадной колонне и в цементном камне; P – продольная волна в породе

Теория обобщенных волн

Основным мотивом ее сторонников служит существование обобщенной волны, которая возникает в многослойной среде «обсадная колонна-цементный камень-горная порода». Первая доступная информация об этой волне появилась в книге, ставшей настольной для геофизиков, занимающихся исследованиями скважин [4], хотя не столь публичные данные были известны значительно раньше [7]. Экспериментальными данными установлено образование обобщенной волны [4, рис. 55]. В низкоскоростном разрезе ($\theta_{\pi} = 2600 \ \text{м/c}$) скорость ее распространения изменяется в зависимости от скорости волны в породе, если волновая толщина цементного камня не превышает $0,1\ h/\lambda$ (где h – толщина цементного камня, λ – длина волны), до скорости в камне ($\theta_{cn} = 3100 \, \text{м/c}$) при h/λ больше 5. Для акустического каротажа превалирующая частота сигналов в породах близка к 15 $\kappa \Gamma u$, если частота колебаний излучателей скважинных приборов составляет $20-25 \ \kappa \Gamma y$. Для такой частоты волновая толщина слоя цементного камня составит более 1 M ($\lambda = 0.2 M$; $h > 5\lambda; h > 1,0 \text{ м}$), то есть такой слой должен рассматриваться как массив, под которым обычно понимают породы.

ментирования (через 34 дня) эксплуатационной колонны (3). Следует отметить, что качество крепления Рис. 4. Определение качества цементирования кондуктора на разных этапах строительства скважины месторождение Каламкас) [6]: измерения выполнены через сутки после цементирования кондуктора (1), после спуска и цементирования (через 5 суток) хвостовика технической колонны (2) и после спуска и цекондуктора улучшается со временем

Общепринятым стало утверждение, что в обсаженной скважине имеет место дисперсия скорости головных волн: по мере роста частоты (соответственно и отношения h/λ) скорость головных волн изменяется от скорости в породе до скорости «в обсадке» [3, с. 153; 4]. В зависимости от состояния контактов на границах цементного камня с колонной и породами образуются обобщенные волны, охватывающие все три составляющие «обсадная колонна—цементный камень—горная порода» или, если существуют жидкостные зазоры рядом с колонной либо стенкой скважины, пары составляющих «цементный камень—порода» и «колонна—цементный камень» соответственно.

На частотах ниже $15 \, \kappa \Gamma y$ в случае жесткого и скользящего (наличие тонкого кольца жидкости) контакта цементного камня с колонной и жесткого с породами влияние камня на распространение обобщенных продольной и поперечной волн исчезающе мало [3, 4]. Скорости распространения и коэффициенты затухания обеих волн с погрешностью менее 1% соответствуют значениям, измеренным в открытом стволе [4]. В других работах уточняется, что это справедливо только для достаточно длинных зондов [10]. Частично это утверждение основано на убеждении, что при жестких контактах камня с колонной и с горной породой в обсадной колонне в диапазоне частот $0,5-50 \, \kappa \Gamma y$ нормальная волна не распространяется, а в первых вступлениях регистрируется обобщенная волна [4, 10].

Натурный эксперимент, выполненный в скважине, скорее подтверждает волноводную версию АКЦ, чем теорию образования обобщенных волн. В приборе, выполненном на основе стандартного прибора АКЦ, в нижней его части закреплена винипластовая труба, в которой приемник упругих колебаний совершает поступательное перемещение вниз—вверх [12]. Расстояние между излучателями прибора $AK-0.5\ m$; минимальное расстояние приемника от ближнего излучателя $-0.35\ m$.

Инициирование движения приемника осуществляется при остановке скважинного прибора. Итог исследования — годографы волн, приходящих к непрерывно движущемуся приемнику (рис. 5). В низкоскоростном разрезе (в данном примере скорость распространения θ_P продольной волны равна 3300 m/c) на годографах выделяется 4 типа волн [5, 6]. В первых вступлениях это волна Лэмба $L_{\rm K}$ в обсадной колонне. Вопреки [4, 10], на коротких базах измерений эта

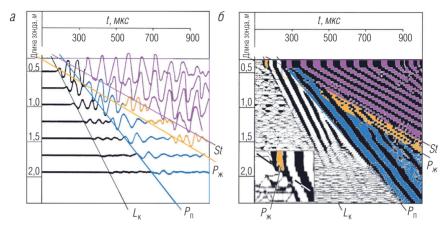


Рис. 5. Волновые картины (a) и годографы (б) упругих волн, полученные в обсаженной скважине прибором с изменяющимися длинами измерительных зондов [5]

волна возбуждается и распространяется. Интервальное время $\Delta t_{\rm K}$ равно 184 $m\kappa c/m$. С увеличением длины зонда ИП интенсивность колебаний этой волны уменьшается вследствие перетоков ее энергии в цементный камень и далее в горные породы. Волна вырождается на удалении от излучателя, равном 1,7–1,9 m. На таком же расстоянии исчезает волна Лэмба в цементном камне (рис. 3).

Второй по времени прихода является продольная (головная) волна $P_{\rm II}$, распространяющаяся в породе. Амплитуды ее первых вступлений заметно уменьшаются для зондов длиной более 1,75 M; регистрируемые скорости распространения также будут уменьшаться (Δt_p увеличивается). Причиной этого служит отфильтровывание наиболее высокочастотных составляющих, но вовсе не обобщение с другой, более низкоскоростной, к тому же отсутствующей в данном примере волной. Волна Лэмба $L_{\rm K}$ в колонне является более высокоскоростной.

На фоне затухающих колебаний волны $P_{\rm II}$ присутствуют колебания волны $P_{\rm II}$, распространяющейся в жидкости. Они наиболее высокочастотные в волновом пакете (согласно [3] наоборот). Волновой фронт волны плоский и совпадает с поперечным сечением кольцевого зазора между стенкой скважины и прибора. Фазовая скорость волны $P_{\rm II}$ не зависит от частоты и равна ее скорости $\theta_{\rm II}$ в неограниченном объеме. Следует обратить внимание на равенство значений $\theta_{\rm II}$, измеренных

при малой длине зонда, которая недостаточна для образования какойлибо отраженной волны (рис. 5, δ , выноска в левом нижнем углу), и зондом длиной 1,5 M. Волна нулевого порядка не характерна для волноводного распространения и быстро затухает с расстоянием.

Последние фазовые линии на рис. 5, a, δ принадлежат интенсивным колебаниям низкочастотной волны Стоунли, распространяющейся вдоль границы жидкости с твердой средой (обсадной колонной или горными породами в необсаженной скважине) в пределах одной длины волны в каждой среде. Если одна из них представлена жидкостью, а вторая – твердой средой, то $\vartheta_{Si} < \vartheta_{ж}$, ϑ_{S} , ϑ_{P} . Скорость распространения, амплитуды и затухание этой волны определяются характеристиками смежных сред, в том числе в горных породах – их проницаемостью. Это ни в коем случае не связано с наличием гидродинамической связи пород с флюидом в стволе скважины. Математическим моделированием доказано, что любые динамические изменения в околоскважинном пространстве, глубина которых достигает длины волны, способствуют образованию радиальной компоненты пластового давления и перераспределению флюида в прискважинном пространстве [11].

Заключение

Современная идеология акустической цементометрии, основанная на постулатах классической физики, позволяет объяснить без издержек поведение упругих волн в условно свободной (окруженной жидкостью) обсадной колонне. Она затрагивает также заполнение затрубного пространства цементной смесью, ее схватывание и набор прочности. Волноводная версия, полностью принадлежащая классической физике, служит деталью, позволяющей понять физику протекающих процессов.

Современная теория обобщенных волн базируется на физике Френеля-Био. Все ее элементы доказательств выполнены с помощью математического моделирования и подтверждаются результатами других авторов, полученными также математическим моделированием. Они не проверялись в реальных условиях. Возможно со временем она (теория) заменит классическую теорию возбуждения и распространения упругих волн. Но для этого необходимо получить убедительные доказательства принадлежности волны Стоунли и бесконечного количества «псевдорелеевских» волн к нормальным

волнам [9], изменений коэффициента расхождения волны (наверное, Лэмба) в колонне как в волноводе [8] и в породах в зависимости от длины зонда [10], существовании неуловимой продольной волны второго рода в коллекторах [3].

ЛИТЕРАТУРА

- 1. *Антонов Ю. Н. и др.* Теория методов ГИС: Учебник / Под ред. Д. А. Кожевникова. М.: ИЦ РГУНГ им. И. М. Губкина, 2015. С. 618.
- 2. Беляков Н. В. Интегрированные геофизические исследования бурящихся скважин. М.: Физматкнига, 2008. 208 с.
- 3. *Горбачев Ю. И.* Геофизические исследования скважин: Учебник для вузов / Под ред. Е. В. Каруса. М.: Недра, 1990. 398 с.
- 4. *Ивакин Б. Н., Карус Е. В., Кузнецов О. Л.* Акустический метод исследования скважин. М.: Недра, 1978. 320 с.
- 5. Козяр В. Ф., Белоконь Д. В., Козяр Н. В. Успехи и недостатки применения акустического каротажа. Направления развития теории и практики на ближайшее время // Сб. трудов XI сессии Рос. акуст. общ. М.: ГЕОС, 2001. Т. 2. С. 155–158.
- 6. Конысов А. К., Козяр Н. В. Акустическая цементометрия обсадных колонн приборами с цифровой регистрацией данных. Алматы, 2009. 192 с.
- 7. *Кузнецов О. Л.* Предпосылки применения акустических методов при решении некоторых задач нефтепромысловой геологии: Дисс. ... на соиск. учен. степени канд. техн. наук. М.: ИГИРГИ, 1967. 222 с.
- 8. *Маркова И. А., Казаков А. М., Лохматов В. М.* О геометрическом коэффициенте расхождения зондов акустического каротажа // НТВ «Каротажник». Тверь: Изд. АИС. 2008. Вып. 4 (169). С. 136–144.
- 9. *Маркова И. А., Казаков А. М., Лохматов В. М.* Синтетические волновые картины акустического каротажа для скважины, содержащей горизонтальную систему микротрещин // НТВ «Каротажник». Тверь: Изд. АИС. 2008. Вып. 4 (169). С. 125–136.
- 10. *Маркова И. А., Садовничий С. Н.* Фактор геометрического расхождения головных волн в обсаженных и необсаженных скважинах // Физика Земли. 2011. № 9. С. 83–90.
- 11. Разработка методического и петрофизического обеспечения волнового акустического каротажа: Заключит. отчет ИГ при РГУ им. И. М. Губкина по договору № 99-31-356.
- 12. Рафиков В. Г., Белоконь Д. В., Козяр В. Ф. Аппаратура акустического каротажа с изменяющейся длиной зонда // Геофизическая аппаратура. 1974. Вып. 56. С. 84–89
- 13. Ультразвук. Маленькая энциклопедия / Глав. ред. И. П. Голямина. М.: Советская энциклопедия, 1979. 400 с.

Рецензент канд. техн. наук В. Н. Даниленко