УДК 621.311:658.26

Г. Б. Бурдо

Тверской государственный технический университет

ИНТЕЛЛЕКТУАЛЬНОЕ УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ ПОДРАЗДЕЛЕНИЯМИ ГЕОФИЗИЧЕСКОГО ПРИБОРОСТРОЕНИЯ

Рассмотрены постановка задачи, способы интеллектуального планирования и управления работой технологических подразделений геофизического приборостроения

Ключевые слова: технологический процесс, искусственный интеллект, управление, оперативное планирование.

Постановка проблемы

Значительная часть предприятий геофизического приборостроения (ГФП), в связи со спецификой изделий, занята выпуском своих разработок, отличающихся высокой наукоемкостью и успешно конкурирующих с зарубежными. Предприятия ГФП, как и другие предприятия единичного и мелкосерийного производства, оказались в стороне от вопросов совершенствования систем управления выпуском изделий

и научных разработок, касающихся этих вопросов. Одними из отличительных характеристик ГФП являются формирование (накопление) договоров в течение календарного года, малые сроки выполнения договорных обязательств, широкая номенклатура изделий, что обуславливает наличие противоречий в производственных системах (ПС) ГФП, связанных с необходимостью оперативной реакции на внешние факторы и отсутствием указанной возможности.

Эти противоречия позволяют осуществить постановку проблемы – повышение эффективности функционирования производственных систем ГФП путем сокращения сроков и совершенствования планово-организационного сопровождения процессов производства изделий.

Автоматизированная система сопровождения производства изделий

Эффективность планирования и управления в ПС геофизического приборостроения удалось повысить путем разработки автоматизированной системы сопровождения (АССП) производства изделий [1, 3]. С учетом общих закономерностей планирования и управления были сформулированы принципы создания АССП в условиях ГФП (системное единство и взаимосвязь, соответствие иерархии планов в АССП планам организации, непрерывность и оперативность, обеспечение резервов, участие человека, комплексность и информационная интеграция с САПР ТП). Сформулированы функции АССП – синтез и корректировка (сопровождение планирования производства) объемных, календарных и оперативных календарных планов-графиков (КПГ) для технологических подразделений (ТП), диспетчирование и выработка управленческих решений (сопровождение производства) на основе анализа результатов диспетчирования. Была разработана и исследована теоретико-множественная модель АССП, анализ которой позволил формализовать с помощью продукционных моделей процедуры принятия решений при синтезе объемных и календарных планов, КПГ и диспетчировании. На основе распознавания ситуации предложены формальные процедуры разработки планов путем анализа соотношений длительности циклов и сроков выполнения заказов, станкоемкостей работ по типам и (или) группам оборудования, фондов времени работы металлорежущего оборудования. Общее управление работой подсистем объемного, календарного и оперативного планирования (расчет КПГ) и принятие решений осуществляются управляющей системой с элементами искусственного интеллекта.

Для синтеза КПГ (оперативные планы) используются приоритетные схемы. Выявлены принципы формирования систем приоритетов (иерархичность, целевая направленность — соответствие целям функционирования организации и иерархии организации, ситуативность — учет параметров состояния ТП при выборе приоритетных схем, постоянство действия важнейших приоритетов, отражающих смысл функционирования ПС, вариабельность — наложение вариативных приоритетов на постоянные).

Обосновано и сформировано 11 систем иерархических приоритетных схем (ПРС), выбираемых продукционными моделями знаний на основе формального распознавания и анализа ситуации в ТП (загрузки оборудования по ходу основного деталепотока, длительности и числа операций в маршрутах запускаемых деталей, времени поступления деталей, наличия свободного оборудования, длительности первой следующей операции и т. д.). Каждая ПРС имеет иерархию приоритетов: глобальный (разряды работ), внутренний (группы работ в пределах разряда), частный (виды работ в пределах группы). Глобальный приоритет определяется исходя из сроков окончания работ, внутренний — из назначения работ в пределах разряда, частный — из ситуации в ТП. Разработаны правила переназначения приоритетов при переходе в следующие интервалы оперативного планирования (ИОП).

Установлены критерии, определяющие выбор КПГ. Стратегией ГФП является работа по принципу "точно вовремя" (just in time). Это означает выпуск изделий в точно указанные сроки и с минимум заделов. Учитывая это, комплексным критерием должен явиться минимальный общий цикл изготовления всех запущенных в производство партий деталей. Выбор этого критерия обеспечивает: 1) непрерывную загрузку рабочих мест (отсеивает варианты с длительными ожиданиями); 2) равномерную загрузку оборудования (известно, что наиболее короткие циклы обеспечивают участки с равномерной загрузкой из-за меньших средних периодов ожидания операций); 3) минимизацию общего срока изготовления деталей; 4) минимизацию незавершенного производства, пропорционального длительности цикла.

Для использования приоритетных схем уточнена постановка конвейерной задачи [4] составления КПГ применительно к ГФП путем

введения 4-го (первые 3 — ненарушаемость маршрута, непрерывность операции, число рабочих мест) ограничения: из находящихся в очереди на обработку на операции O_{lqi} l партий деталей первой на станок (время начало операции t_{lq}^o более раннее) поступает имеющая высший (символ выше — ») приоритет Π_l : $\forall \ \Pi_l \ (l=1,\,2,\,\ldots,\,v,\,\ldots,\,w,\,\ldots,\,l) \ [\Pi_v \gg \Pi_w) \to (t_{vq}^o < t_{wq}^o)]$. Требуется построить календарный план КПГ = $\{t_{lq}^o\}$ с учетом ограничений и удовлетворяющий целевой функции $T_l = \max\{t_{lqi}^k\} \to \min$, где t_{lqi}^k — время окончания обработки l-й партии деталей на q-й операции на i-й группе станков от начала ИОП.

Для расчета КПГ плановый период разбивается на пятидневные ИОП, для сравнения оставляются 2-3 схемы. Реализация решения возможна на основе известного метода "ветвей и границ", но практически при использовании ПРС в этом нет необходимости. Диспетчирование строится на отслеживании фактических времен начала операций и сравнении их с расчетными (в КПГ) по каждой обрабатываемой партии деталей. Анализом состояния при запуске деталей C_{TT}^0 , фактических и допустимых величин отставания (опережения) КПГ за данный и предшествующие ИОП (состояния $C_{T\Pi}^{\tau-1}$), фактических (Φ^{τ}) и плановых (Φ^{Π}) фондов времени работы оборудования по типам и (или) группам формально определяются причины рассогласования КПГ (несоответствие фондов времени работы, некорректные нормативы, оргпричины). Продукциями (ПР_i) на основе подусловий (ПУ) выявляются управленческие решения (УР) по введению ТП в плановый режим (дополнительные смены и рабочие места, пересмотр планов и т. п.):

$$\begin{split} &\forall \mathbf{C}_{\Pi\Pi}^{\tau}, (\mathbf{C}_{\Pi\Pi}^{\tau} \leq \Pi_{\mathbf{K}\Pi\Gamma}^{\tau}, \boldsymbol{\Phi}^{\tau}, \boldsymbol{\Phi}^{\Pi} >) \exists \{\{\Pi \mathbf{P}_i\}_j\} \, [<\mathbf{C}_{\Pi\Pi}^{0}, \mathbf{C}_{\Pi\Pi}^{\tau-1}, \mathbf{C}_{\Pi\Pi}^{\tau} >_i \rightarrow \{\Pi \mathbf{Y}\}_i; \\ &\{\Pi \mathbf{Y}\}_i \rightarrow \Pi \mathbf{P}_i; \, \{\Pi \mathbf{P}_i\}_k \rightarrow \mathbf{Y} \mathbf{P}_k]. \end{split}$$

В противоречивых ситуациях предусмотрено вмешательство оператора. Схема работы АССП приведена на рисунке.

Исходными данными для работы программного комплекса АССП служат карты времен операций технологических процессов изготовления изделия (заказа). На этапах объемного и календарного планирования выдаются соответствующие карты — задания для ТП и мастеров. На этапе диспетчирования используется карта с указанием плановых и фактических времен выполнения операций по деталям.

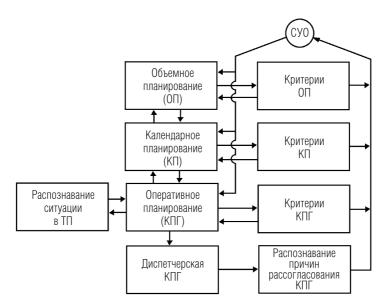


Рис. Схема работы АССП

Если определение и учет большого числа параметров затруднен, при числе рабочих мест в ТП менее 25–30 (возможна оценка отставаний и выявление причин рассогласования КПГ мастерами), предложено применение диспетчирования на основе аппарата нечетких множеств. Объект управления – КПГ. Управление ведется по входам: 1) относительное объемное отставание (опережение) плана по типу и (или) группе станков с начала диспетчирования; 2) относительное среднее объемное отставание (опережение) плана по типу и (или) группе станков за один ИОП с начала диспетчирования; 3) увеличение (уменьшение) отставания (опережения) объемного плана за последний ИОП по сравнению со средним по типу и (или) группе станков. Выходные параметры: относительное увеличение (уменьшение) фондов времени работы по типу и (или) группе станков за следующий ИОП. Алгоритм управления состоит из 17 нечетких правил. Реализация методики выполнена в среде МАТLАВ [2].

Заключение

Разработанные программные средства прошли опытную проверку в ООО "Нефтегазгеофизика" (г. Тверь). Можно констатировать, что срывы сроков выполнения договоров сократились с 7,7 до 0,5%, сверхурочная работа с 5,2 до 0,2%, приостановка выполнения заказов с 9,3 до 0,3% (от соответствующих общих объемов).

ЛИТЕРАТУРА

- 1. *Бурдо Г. Б.* Принципы построения автоматизированной системы управления технологическими процессами в многономенклатурных производствах // Вестник Саратовского гос. техн. ун-та. 2010. № 3 (48). С. 113–118.
- 2. Дьяков В., Круглов В. Математические пакеты расширения МАТLAB: Специальный справочник. СПб.: Питер, 2001. 480 с.
- 3. *Палюх Б. В., Бурдо Г. Б.* Повышение эффективности управления технологическими подразделениями в условиях единичного и мелкосерийного производства // Вестник Донского гос. техн. ун-та. 2009. Том 9. № 4 (43). С. 659–666.
- 4. *Прилуцкий М. Х., Власов В. С.* Метод ветвей и границ с эвристическими оценками для конвейерной задачи теории расписаний // Вестник Нижегородского университета им. Н. И. Лобачевского. 2008. № 3. С. 143–157.