УДК 550.832.74

Б. В. Рудяк, О. М. Снежко, Ю. Л. Шеин ООО "Нефтегазгеофизика"

ОПРОБОВАНИЕ АВТОНОМНОГО ПРИБОРА ДВУХЗОНДОВОГО БОКОВОГО КАРОТАЖА БК-35А В ГОРИЗОНТАЛЬНЫХ СКВАЖИНАХ

Приведены результаты опробования автономного прибора двухзондового бокового каротажа БК-35A в горизонтальных интервалах боковых стволов скважин, заполненных высокоминерализованной промывочной жидкостью. Показано, что по кривым кажущегося сопротивления (КС) длинного и короткого зондов бокового каротажа уверенно выделяются пласты с зоной понижающего проникновения и оцениваются их электрические параметры.

Ключевые слова: двухзондовый боковой электрокаротаж, зона проникновения, автономный прибор, горизонтальная скважина, высокоминерализованная промывочная жидкость.

В настоящее время большинство боковых стволов, пологих и горизонтальных скважин бурятся с применением высокоминерализованной промывочной жидкости (ПЖ), а исследования с целью выделения проницаемых интервалов и определения их электрических параметров проводятся автономными приборами электромагнитного каротажа (ЭМК), такими как ВИКИЗ, 5ИК-А-90, ЭКМА-90Г, 4ИК-48А, спускаемыми на бурильных трубах. На показания зондов ЭМК, особенно коротких, в условиях применения высокоминерализованных ПЖ большое влияние оказывает кавернозность ствола скважин, приводящая к появлению на диаграммах ИК и ВИКИЗ специфических осцилляций. При пересчете в единицы удельного электрического сопротивления (УЭС) амплитуда этих осцилляций тем больше, чем выше значение УЭС изучаемого разреза, поскольку в этом случае вклад в регистрируемый сигнал от скважины может быть в несколько раз больше вклада от разреза. Поэтому при заполнении скважин высокоминерализованной ПЖ данные ЭМК в разрезах, представленных пластами, имеющими значения УЭС более 20–50 Ом:м, часто являются неинформативными. В таких условиях более эффективен боковой каротаж (БК).

В ООО "Нефтегазгеофизика" разработан и серийно изготавливается автономный прибор бокового каротажа БК-35A [2], включающий

два разноглубинных зонда — длинный БК-3 и короткий БК-5 — и предусматривающий регистрацию кривой естественных потенциалов ПС. Данный прибор является самостоятельным, а соединительное устройство на концах прибора позволяет состыковывать его с другими приборами комплекса серийных автономных приборов ООО "Нефтегазгеофизика" [2].

Для сопоставления радиальной глубинности зондов аппаратуры БК-35А с другими зондами бокового каротажа приведены оценки их радиусов исследования, полученные по псевдогеометрическим факторам зоны проникновения (табл. 1).

Таблица 1 Радиусы исследования зондов БК-3 и БК-5 ($d_{\rm c}=200$ мм; $\rho_{\rm c}=1,0$ Ом·м)

		Радиус исследования $R_{1/2}$, M						
Прибор	Зонд	Повышающее проникновение $\rho_{\Pi} = 10 \ Om \cdot M$, $\rho_{3\Pi} = 100 \ Om \cdot M$	Понижающее проникновение ρ _п = 100 <i>Ом·м</i> , ρ _{зп} = 10 <i>Ом·м</i>					
БК-35А	БК-3	0,77	0,68					
(автономный)	БК-5	0,34	0,28					
БК-35	БК-3	0,79	0,73					
(на кабеле)	БК-5	0,40	0,35					
АБКТ	БК-3	0,71	0,63					
ЭК-1Т	БК-3	0,82	0,78					
Эк-73ПЛ	БК-3	0,70	0,60					

Радиальные псевдогеометрические факторы зоны проникновения $G^*(R)$ зондов БК определялись из соотношения

$$\begin{split} \rho_{\rm K}^{(3)}(\rho_{\rm c},\,\rho_{\rm 3II},\,\rho_{\rm II},\,d_{\rm c},\,R) &= G^*(R)\cdot\rho_{\rm K}^{(2)}(\rho_{\rm c},\,\rho_{\rm 3II},\,d_{\rm c}) + \\ &+ (1-G^*(R))\cdot\rho_{\rm K}^{(2)}(\rho_{\rm c},\,\rho_{\rm II},\,d_{\rm c}), \end{split}$$

где $\rho_{\rm c},~\rho_{\rm 3\Pi},~\rho_{\rm \Pi}$ — сопротивление ПЖ, зоны проникновения и неизмененной части пласта соответственно; $d_{\rm c}$ — диаметр скважины;

R — радиус зоны проникновения; $\rho_{\rm K}^{(3)}(\rho_{\rm C}, \rho_{\rm 3II}, \rho_{\rm II}, d_{\rm C}, R)$ — кажущееся сопротивление зонда в трехслойной модели; $\rho_{\rm K}^{(2)}(\rho_{\rm C}, \rho_{\rm 3II}, d_{\rm C})$, $\rho_{\rm K}^{(2)}(\rho_{\rm C}, \rho_{\rm II}, d_{\rm C})$ — кажущиеся сопротивления зонда в двухслойных моделях с соответствующими значениями параметров моделей. За глубинность исследования зонда в радиальном направлении принималась величина радиуса зоны проникновения, при которой ее псевдогеометрический фактор равен 0,5, то есть из условия $G^*(R_{1/2})=0,5$.

Из табл. 1 следует, что длинный зонд БК-3 аппаратуры БК-35А имеет радиус исследования лишь немного меньший, чем у кабельных приборов БК-35 и ЭК-1Т (на 3–6% при повышающем и 7–13% при понижающем проникновении). Радиус исследования короткого зонда БК-5 прибора БК-35А и при повышающем, и при понижающем проникновении меньше, чем у кабельной модификации прибора БК-35 на 15 и 20% соответственно. Это означает, что длинный зонд аппаратуры БК-35А по радиусу исследования близок к традиционным зондам БК-3, но из-за большей разницы в радиальной глубинности зондов БК-3 и БК-5 аппаратура БК-35А имеет несколько лучшие методические возможности при выделении коллекторов по сравнению с кабельным вариантом прибора БК-35. Вертикальное разрешение рассмотренных зондов БК-3 и БК-5 практически одинаково, поскольку в основном оно определяется длиной центрального электрода, равной для всех упомянутых зондов 0,15 м.

В апреле-мае 2008 г. в районе работ ООО "Когалымнефтегеофизика" в боковых стволах трех скважин автономным прибором БК-35А был проведен каротаж при следующих условиях:

- номинальные диаметры скважин равны 124 и 143 мм;
- УЭС ПЖ находилось в пределах 0,04-0,06 Ом:м;
- протяженность горизонтального участка (когда зенитный угол больше 85°) составляла 170-180~m при общей длине ствола, равной 3130-3400~m.

На первом этапе выполнялся каротаж приборами на кабеле ЭК-73ПЛ и ИКЗ-2, причем интервал исследования ограничивался глубиной, на которой зенитный угол достигал 63°. Затем проводились исследования автономными приборами. Каротаж прибором БК-35А осуществлялся по всему открытому стволу скважины, а автономными приборами ВИКИЗ или ЭКМА-90Г — в более пологой части ствола, когда зенитный угол превышал 37°. Поскольку исследования

автономными приборами осуществлялись не позже, чем через двое суток после исследований приборами на кабеле, оценка качества всех имеющихся данных БК и ЭМК проводилась совместно.

При обработке диаграмм БК и ЭМК использовались данные автономного акустического профилемера АСПГ-100, скважинного (приборы на кабеле) или лабораторного резистивиметров. Из данных профилеметрии следует, что диаметр скважины в пластах проницаемых песчаников близок к номинальному. Пласты глин часто осложнены кавернами с диаметрами, превышающими номинальный на 13–45 мм, и значительными желобами, разница между максимальными и минимальными значениями в которых составляет 10–30 мм. Вскрытая мощность пластов, в которых пробурена горизонтальная часть ствола скважины, рассчитанная с учетом абсолютных глубин (по данным инклинометрии), составляет 1–4 м. Проникновение фильтрата ПЖ в нефтенасыщенные и водонасыщенные интервалы, представленные полимиктовыми песчаниками, имеет понижающий характер.

Вся обработка данных БК и ЭМК проведена с помощью программы LogWin-ЭК [1], в которой обработка данных зондов БК-3, БК-5 аппаратуры БК-35А реализована наиболее полно. Эта программа, в частности, включает в себя следующие процедуры:

- поточечная обработка с целью устранения влияния скважины;
- оценка качества (выявление систематических погрешностей измерений);
- попластовая обработка с целью определения значений УЭС пласта и промытой зоны и относительного диаметра зоны проникновения;
- поточечная оценка электрических параметров пластов по данным зондов БК-3, БК-5 аппаратуры БК-35А и зонда БМК.

В последней процедуре используется интерпретационная модель пласта неограниченной мощности. При обработке в каждой точке заданного интервала определяются УЭС неизмененной части пласта, промытой зоны и относительная глубина зоны проникновения (D/d). Для уменьшения области эквивалентности имеется возможность задания диапазона искомых значений D/d и априорных значений УЭС промытой зоны.

Интерпретационные модели, используемые в перечисленных процедурах, предназначены для обработки данных, полученных в вертикальных скважинах. В них не учитывается специфика наклон-

ного и горизонтального стволов - существенная осевая асимметрия зоны проникновения, непараллельность оси анизотропии и оси скважины, особенности влияния вмещающих пород. Результаты, полученные при такой обработке на горизонтальных и наклонных участках скважин, могут иметь дополнительные погрешности, обусловленные отмеченной неадекватностью интерпретационных моделей. По этой причине опорные пласты для оценки качества выбирались на участках скважин, по возможности близких к вертикальным (величина зенитного угла α находилась в диапазоне от 30 до 48°). Оценка качества данных БК-35A проводилась совместно с данными БК и ИКЗ-2, зарегистрированными приборами на кабеле, и с данными автономных приборов ВИКИЗ или ЭКМА-90Г. В непроницаемых интервалах визуально оценивалась сходимость кривых КС, исправленных за влияние скважины. Попластовая оценка качества проводилась по всем имеющимся данным комплекса зондов БК, ЭМК, полученным в одном или двух однородных непроницаемых пластах (глинах), с УЭС, равным 3-6 Ом:м. Данные коротких зондов ВИКИЗ при попластовой оценке качества и попластовой обработке не использовались, поскольку они осложнены значительными осцилляциями. В результате поточечной и попластовой оценки качества было установлено, что данные БК-35А зарегистрированы без существенных искажений (табл. 2).

После оценки качества проводилась совместная попластовая обработка данных БК и ЭМК, полученных в проницаемых интервалах этой же части разреза (при $30^{\circ} \le \alpha \le 48^{\circ}$). При этом наблюдались близкие значения фактических и расчетных показаний зондов (уровень соответствия в пределах 0.23-0.50), что является косвенным подтверждением правильности проведенной оценки качества. Пример поточечной (поправка за скважину) и совместной попластовой обработки данных ИКЗ-2, БК (ЭК-73ПЛ, БК-35А), ВИКИЗ, проведенной в процессе оценки качества в скв. 1, приведен на рис. 1.

Диаграммы, полученные при поточечной обработке, были использованы для выделения интервалов с зоной проникновения, признаком которых является наличие закономерного изменения УЭС в радиальном направлении. Результаты выделения интервалов с зоной проникновения по данным БК-35A сопоставлялись с результатами, полученными по данным ИКЗ-2 (на кабеле) и данным автономных приборов ВИКИЗ и ЭКМА-90Г. Такое сопоставление показало, что в

Результаты совместной попластовой обработки данных БК, ИК и ВИКИЗ в программе LogWin-ЭК

Таблица 2

	Λ	Λ		0,42	0,5	6,1 0,48	0,35	6,5 0,41	6,5 0,52	5,2 0,45	7,5 0,72	6,4 0,48		0,48	7,3 0,36
년 기기	p	a		-	9	6,1	_	6,5	6,5	5,2	7,5	6,4		-	7,3
пьтал	M·MC	ρ ^{ιειι} d			1,7	2,3		3,9	4,2	3,4	3,8	3,9			6,0
Результаты интерпретации	w-wO	, _⊓ q∆		0,2	0,44	0,42	0,21	0,79	0,75	1,12	1,32	1,08		0,11	0,29
Z	w.w(p _n , C		2	4,2	9,4	9	7,7	7,2	11,6	11,3	10,4 1,08		က	2,3
	√-90F	3И1, мСм/м													
боры	ЭКМА-90Г	IK5, 3И0,5, ерад мСм/м													
идп :	~	ІК5, град					15,3	13	13,4	8,6	10,6	10,6			
МНЫЕ	ВИКИЗ	IK4, apað	I-M				15,3	13,6	14,1	10,2	10,9	11,5	W.		
Автономные приборы	В	ІКЗ, град	44 O				14,8	4	14,3	10,7	12,7	12,1	MO 90		
Ā	35A	БК-5, Ом·м	0,0 = 0	9	2,5	3,2	6,9	5,1	6,4	6,9	8,9	9,9)° = 0'(3,3	1,2
	EK-35A	БК-3, Ом·м	мм; р	2,8	3,3	3,7	8,9	7,4	7,3	9,5	9,4	6,8	MM; p	3,2	, 8,
		БК-3, 3И0,5, 3И0,85, 3И1,26, 3И2,05, БК-3, БК-5, Ом-м мСм/м мСм/м мСм/м мСм/м Ом-м Ом-м	Скв. 1; $d_{\rm H} = 124$ мм; $\rho_{\rm c} = 0.044$ Ом·м	100	107	86	06						Скв. 2; $d_{\rm H} = 124 \ {\it mm}$; $\rho_{\rm c} = 0.06 \ {\it Om} \cdot {\it M}$	129	144
Приборы на кабеле	ИКЗ-2	3И1,26, мСм/м	Скв. 1; о	131	148	144	113						Скв. 2;	193	247
оры на	Ž	3И0,85, мСм/м		152	192	171	128							240	343
Прибо		3И0,5, мСм/м		169	258	215	140							287	517
	ЭК- 73ПЛ	БК-3, О <i>м</i> ·м		5,4	3	3,6	6,5							3,3	1,8
	м ,АН			3,4	1,5	6,	0,1	0,05	0,04	0,03	0,04	0,07		2,5	7,9
sbag	г. угол,	Зени		30	33	37	45	88	06	06	06	06		35	36
	м 'Н			3,8	6,	2,2	2,8	10,8	5,4	3,4	5,2	9		ю	9,8
w '	Дошва	оП		2583,8 2587,6	2595,2 2597	2610,4 2612,6	2650,2 2653	3155 3165,8 10,8	3175,4 5,4	3191 3194,4 3,4	3194,4 3199,6	3199,6 3205,6		2405,8 2408,8	2410,4 2420,2 9,8
W	,кпаос	Kİ		2583,8	2595,2	2610,4	2650,2	3155	3170	3191	3194,4	3199,6		2405,8	2410,4

Окончание табл. 2

	spað			Прибс	ры на	Приборы на кабеле) ¥	Автономные приборы	мные	прис	Ічдоў		Z	Результаты интерпретации	Результаты терпретаци	Ę Ę.	
,кпаос , вашод м Н	, М Н, М г. угол,	M ,AH	ЭК- 73ПЛ		Z	ИКЗ-2		EK-35A	35A	ā	викиз		ЭКМА-90Г	√-90F	w.w(w-wO	M·MC	p,	Λ
	гинэЕ		БК-3, Ом·м	3/10,5, 3/10,5/	3M0,85, MCM/M	БК-3, 3И0,5, 3И0,85, 3И1,26, 3И2,05, БК-3, БК-5, Ом-м мСм/м мСм/м мСм/м мСм/м Ом-м Ом-м	3/12,05, MCM/M	BK-3, Om∙m	БК-5, Ом·м	ІКЗ, град	IK4, град	ІК5, град	IK5, 3И0,5, ерад мСм/м	3И1, мСм/м	p ^u , C	, _' ud∆	ρ ^{ιιει} d	a	Λ
2545 2547,8 2,8	8 43	2	4,6	233	195	159	115	4,2	4						3,8	0,15		-	0,65
2988 2999,4 11,4	4,	0,09						က	2,2				294	203	t, 1,	0,44	1,6	9	0,79
2999,4 3010,6 11,2	,2	0,03						2,1	2,3				279	200	6,4	4,3 0,48	1,7	6,1 0,75	3,75
3010,6 3018,2 7,6	06 9	0,04						2,8	7				310	215	3,8	0,41	4,	5,8 0,72	0,72
						Скв. 3; $d_{\rm H} = 143 \ {\it mm}$; $\rho_{\rm c} = 0.041 \ {\it Om} \cdot {\it m}$	η _н = 143	мм; р	0,0 = 0	41 OM	M-1								
2754 2760,2 6,2	2 48	4,1						2,7	5,5	16,1	15,9	16,8			5,1	0,29		-	0,24
3116,4 3120,2 3,8	8 79	0,7						326	313						305	101		_	0,05
3197,4 3203,2 5,8	8 85	0,5						5,9	8,4	16,1	15,2	16,2			5,3	0,38	4,2	2,5 0,45	0,45
3203,2 3212,6 9,4	4 86	0,7						9,4	3,4	17,9	17,7	18,1			4,5	0,4	2,7	4	0,35
3212,6 3220,4 7,8	8	0,5						t, 1	2,8	20,6	19,4	19,6			3,9	0,41	2,4	5,4 0,38	38
3220,4 3227,8 7,4	4 88	0,4						4,	3,3	17,6	17,5	18,5			4,	0,35	2,6	3,4	4,0
3266 3274,4 8,4	4 92	0,2						4	2,8	20,1	19,5	19,6			3,9	0,37	2,3	4,7 0,32),32
	 -	ļ							1					1.					

ющий соотношение между предполагаемыми погрешностями измерений (заложенными в задаче) и расхождением Примечание. Др_п – абсолютная погрешность определения р_п; W – уровень соответствия (параметр, характеризурезультатов измерений и расчетных показаний зондов).

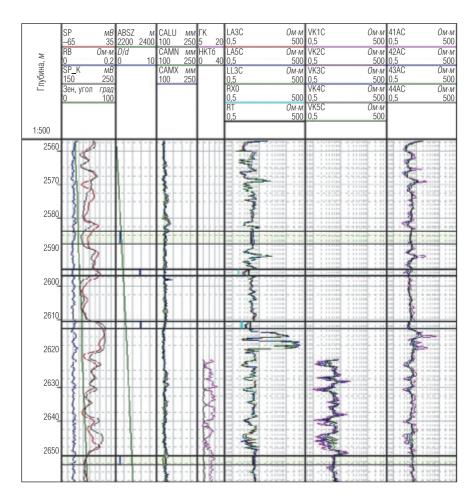


Рис. 1. Пример поточечной и попластовой обработки данных автономных приборов БК-35A, ВИКИЗ и приборов на кабеле ИКЗ-2, ЭК-73ПЛ (БК), проведенной в процессе оценки качества, и пример записи кривой ПС приборами БК-35A и ЭК-73ПЛ:

Скв. 1 ($d_{\rm H}$ = 124 mM; $\rho_{\rm C}$ = 0,044 OM·M): LA3C, LA5C — значения КС зондов БК-3, БК-5 прибора БК-35A, исправленные за влияние скважины; LL3C, RB — значения КС зонда БК-3, исправленные за влияние скважины и УЭС ПЖ по данным прибора ЭК-73ПЛ; SP, SP_K — кривые естественных потенциалов, зарегистрированные проборами БК-35A и ЭК-73ПЛ; 41AC, 42AC, 43AC, 44AC — значения КС активных составляющих зондов 3И0,5;

3И0,85; 3И1,26; 3И2,05 прибора ИКЗ-2, исправленные за влияние скважины; VК1С, VК2С, VК3С, VК4С, VК5С — значения КС зондов ВИКИЗ, исправленные за влияние скважины; RT, RX0, D/d — значения УЭС пласта и промытой зоны и относительный диаметр зоны проникновения, определенные по данным БК-35A, ЭК-73ПЛ, ИКЗ-2, ВИКИЗ; CALU, CAMN, CAMX — значения среднего, максимального и минимального диаметров скважины по данным автономного акустического профилемера АСПГ-100; зеленым и голубым цветом выделены опорные (непроницаемые) пласты и пласты с зоной проникновения соответственно

рассматриваемых геолого-технических условиях на всем протяжении бокового ствола скважины данные БК-35А позволяют достаточно уверенно решать эту задачу, поскольку расхождение между кривыми КС зондов БК-3 и БК-5, исправленными за влияние скважины, в пластах с зоной понижающего проникновения составляет 10–25% (рис. 1–3). Более того, в условиях, когда данные ИК и ВИКИЗ искажены осцилляциями, выделение пластов с зоной проникновения по данным БК-35А производится гораздо более надежно. Также надежно с использованием данных БК-35А решаются задачи расчленения разреза и определения УЭС пластов баженовской свиты (интервал 3014,0–3128,6 м). Поскольку диаграммы зондов ИК и ВИКИЗ в данном случае не являются информативными, упомянутые задачи при значениях УЭС, превышающих 80–100 *Ом*·м, решаются только по данным БК-35А (рис. 2).

Попластовая обработка данных БК-35А, зарегистрированных в проницаемых песчаниках горизонтальной части скважины ($85^{\circ} \le \alpha \le 92^{\circ}$), проводилась по той же методике, что и в вертикальной части, совместно с данными ВИКИЗ или ЭКМА-90Г. Отличительной особенностью являлось то, что при обработке весьма протяженных однородных интервалов (5–11,4 м) абсолютные глубины границ этих интервалов отличаются незначительно, поэтому и рассчитанные по ним мощности (H_{Δ}) весьма малы (намного меньше, чем в верхней части ствола скважины) и составляют 0,03-0,7 м (табл. 2). Как и в верхней части разреза, при попластовой обработке не были использованы диаграммы коротких зондов ИК и ВИКИЗ, которые в горизонтальной части скважины подвержены наиболее сильным осцилляциям, являющимся помехой не только при выделении пластов с зоной проникновения, но и при снятии отсчетов для попластовой обработки (рис. 2, 3). В то же время в этих условиях кривые КС зондов БК-35А зарегистрированы без искажений, по ним уверенно выделяются пласты с зоной проникновения и снимаются отсчеты для попластовой обработки.

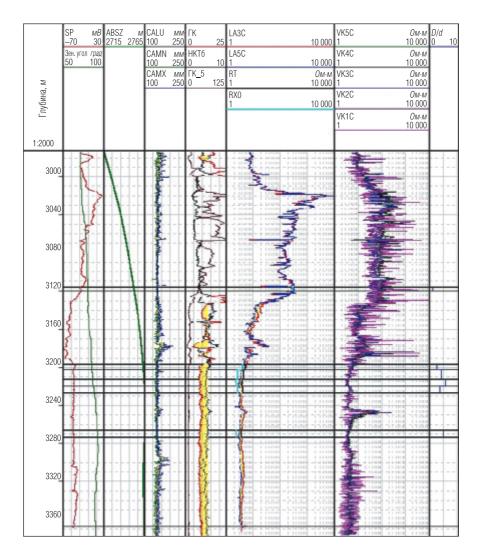


Рис. 2. Пример поточечной и попластовой обработки данных автономных приборов БК-35A, ВИКИЗ, проведенной в пластах с высоким УЭС и в горизонтальной части ствола:

Скв. 3 ($d_{\rm H}$ = 143 ${\it MM}$; $\rho_{\rm C}$ = 0,041 ${\it Om\cdot M}$): LA3C, LA5C – значения КС зондов БК-3, БК-5 прибора БК-35A, исправленные за влияние скважины; SP – кривая естественных

потенциалов, зарегистрированная пробором БК-35A; VK1C, VK2C, VK3C, VK4C, VK5C – значения КС зондов ВИКИЗ, исправленные за влияние скважины; RT, RX0, D/d – значения УЭС пласта и промытой зоны и относительный диаметр зоны проникновения, определенные по данным БК-35A, ВИКИЗ; CALU, CAMN, CAMX – значения среднего, максимального и минимального диаметров скважины по данным автономного акустического профилемера АСПГ-100; зеленым и голубым цветом выделены непроницаемые пласты и пласты с зоной проникновения соответственно

При обобщении результатов обработки данных БК-35А и ЭМК, зарегистрированных в горизонтальной части рассматриваемых скважин, было установлено, что значение УЭС пластов проницаемых песчаников, имеющих различный характер насыщения, находится в пределах 3,8-11,6 Ом:м. Проникновение фильтрата ПЖ в пластыколлекторы всегда является понижающим, а значение УЭС промытой зоны составляет 1,4-4,2 Ом:м. Результаты определения величины относительного диаметра зоны проникновения (D/d = 2,5-7,5) не всегда надежны из-за невысокой контрастности понижающего проникновения ($\rho_{\rm sn}/\rho_{\rm n} = 0.3-0.8$), характерного для данных геолого-технических условий. Уровень соответствия фактических и расчетных показаний в горизонтальной части скважин несколько больше, чем при зенитном угле в диапазоне $30^{\circ} \le \alpha \le 48^{\circ}$, но и здесь его значения находятся в допустимых пределах (0,32-0,79). Вероятно, это увеличение связано с недостаточно корректным учетом влияния вмещающих пород и с влиянием анизотропии пластов, которая, как известно, завышает показания зондов ЭМК [3].

Оценка УЭС неизмененной части разреза по данным БК-35A в поточечном режиме из-за отсутствия данных бокового микрокаротажа проводилась с привлечением априорных данных о значениях $\rho_{\Pi 3}$ и D/d. Кривая $\rho_{\Pi 3}$ была рассчитана во всех проницаемых интервалах через параметр пористости, а интервал возможных значений D/d предполагался равным 2—7, поскольку в данной скважине максимальное значение параметра D/d, полученное при попластовой обработке, равно 7. Результаты такой экспресс-оценки УЭС разреза, вскрытого в горизонтальной части бокового ствола скв. 1, приведены на рис. 3. Расхождения между значениями УЭС пластов, определенными в режиме поточечной обработки только данных БК-35A и в результате попластовой обработки данных комплекса БК-35A и ВИКИЗ, достигают 25% (рис. 3).

Диаграммы КС зондов БК-3 и БК-5, исправленные за влияние скважины, в трех непроницаемые прослоях, вскрытых скв. 3 в

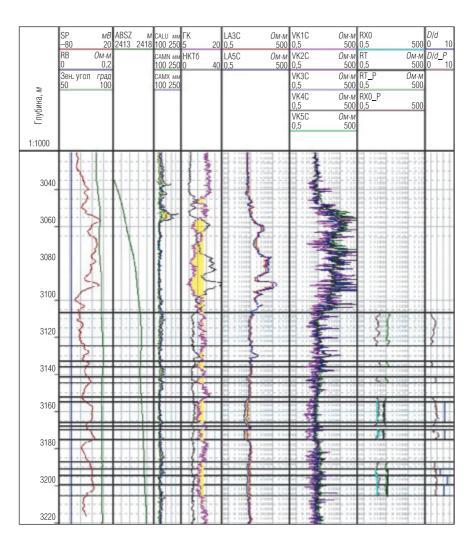


Рис. 3. Результаты определения электрических параметров пластов, вскрытых в горизонтальной части боковых стволов, в результате попластовой обработки данных БК-35A, ВИКИЗ и экспресс-оценки по данным БК-35A: Скв. 1 ($d_{\rm H}$ = 124 mM; $\rho_{\rm C}$ = 0,044 OM·M): LA3C, LA5C — значения КС зондов БК-3, БК-5 прибора БК-35A, исправленные за влияние скважины; SP — кривая естественных потенциалов, зарегистрированная пробором БК-35A; VK1C, VK2C, VK3C, VK4C,

VK5C — значения КС зондов ВИКИЗ, исправленные за влияние скважины; RT, RX0, D/d — значения УЭС пласта и промытой зоны и относительный диаметр зоны проникновения, определенные в попластовом режиме по данным БК-35A и ВИКИЗ; RT_P, RX0_P, DID_P — значения УЭС пласта и промытой зоны и относительный диаметр зоны проникновения, определенные в поточечном режиме по данным БК-35A; CALU, CAMN, CAMX — значения среднего, максимального и минимального диаметров скважины по данным автономного акустического профилемера АСПГ-100; голубым цветом выделены пласты с зоной проникновения

интервале 3018,4–3020,2 $_{\it M}$, несмотря на высокие значения УЭС ($\rho_{\rm \Pi}=3800$ –12 000 $_{\it OM:M}$ или $\rho_{\rm \Pi}/\rho_{\rm c}=84$ 000–260 000), имеют расхождения, не превышающие 30% (рис. 2). Отсутствие измерений другими зондами БК не позволяет подтвердить достоверность полученных показаний при столь высоких значениях УЭС пластов, однако эти результаты дают возможность оценить реальный диапазон измеряемых значений УЭС аппаратурой БК-35A.

Анализ качества результатов записи кривой ПС прибором БК-35А проводился посредством сравнения их с записями кривой ПС прибором на кабеле в верхней части скважин и с кривой ГК в горизонтальной ее части. На рис. 1 приведен пример записи кривой ПС прибором на кабеле ЭК-73ПЛ и автономным прибором БК-35А. Конфигурация кривых, записанных автономным прибором и прибором на кабеле, практически одинакова, а отличия в значениях аномалий не превышают 30%. В этой и других скважинах кривая ПС в целом отражает разрез, что подтверждается данными ПС, зарегистрированными прибором на кабеле и данными ГК, зарегистрированными автономным прибором (рис. 1–3). Несмотря на имеющиеся немногочисленные скачки, срывы и дребезг, требующие выявления причин их появления, был сделан вывод об удовлетворительном качестве записи кривой ПС.

Выводы

- 1. Записи КС и ПС зондами БК-3, БК-5 прибора БК-35А имеют хорошее качество.
- 2. По данным длинного БК-3 и короткого БК-5 зондов уверенно выделяются пласты-коллекторы, что подтверждается материалами ВИКИЗ, ЭКМА-90Г, ИКЗ-2.
- 3. Зонды БК-3 и БК-5 прибора БК-35A позволяют регистрировать диаграммы КС при высоких отношениях $\rho_{\rm n}/\rho_{\rm c}$ (до 260 000).

- 4. В скважинах, заполненных высокоминерализованной ПЖ, метод БК обладает преимуществом перед методами ВИКИЗ и ИК, поскольку кривые КС зондов БК не осложнены значительными осцилляциями, характерными для кривых КС методов ЭМК.
- 5. Кривая ПС в целом отражает разрез, что подтверждается данными ПС, зарегистрированными приборами на кабеле и данными ГК.

ЛИТЕРАТУРА

- 1. Шеин Ю. Л., Павлова Л. И., Рудяк Б. В., Снежко О. М. Определение геоэлектрических характеристик разреза в программе LogWin-ЭК // НТВ "Каротажник". Тверь: Изд. АИС. 2009. Вып. 5 (182). С. 89–100.
- 2. *Хаматдинов Р. Т.* Комплекс автономных приборов для исследования пологих и горизонтальных скважин // HTB "Каротажник". Тверь: Изд. АИС. 2008. Вып. 10 (175). С. 3-16.
- 3. Электрическая анизотропия продуктивных пластов-коллекторов в горизонтальных скважинах Федоровского месторождения Западной Сибири / В. В. Вержбицкий, Б. В. Рудяк, О. М. Снежко, Ю. Л. Шеин, Н. К. Глебочева // НТВ "Каротажник". Тверь: Изд. АИС. 2005. Вып. 2. С. 9–23.