Производственный опыт

УДК 550.832

Р. Т. Хаматдинов ООО "Нефтегазгеофизика"

КОМПЛЕКС АВТОНОМНЫХ ПРИБОРОВ ДЛЯ ИССЛЕДОВАНИЯ ПОЛОГИХ И ГОРИЗОНТАЛЬНЫХ СКВАЖИН

Рассмотрены набор приборов автономной аппаратуры, предлагаемых для исследования пологих и горизонтальных скважин, технические характеристики и область применения. На основе скважинных измерений показаны возможности и ограничения методов для различных горно-геологических условий.

Ключевые слова: скважина, автономные приборы, комплексы методов, возможности. ограничения.

Качество строительства горизонтальных скважин и боковых стволов зависит от точности их проводки и учета вертикальной и латеральной неоднородности проектного пласта. Современные забойные телесистемы MWD позволяют в большинстве случаев обеспечить проектную точность проводки ствола скважин.

Учет вертикальной и латеральной неоднородности пласта по коллекторским свойствам — задача достаточно сложная. При моделировании объектов разработки не всегда достигается необходимая точность прогноза распространения коллектора по латерали в направлении проектного ствола в случае прерывистых пластов и сложно построенных коллекторов. В подобных случаях горизонтальный ствол скважины пересекает породы с различными коллекторскими свойствами, появляются зоны замещения и выклинивания. В частности, кол-

лекторы месторождений Западной Сибири характеризуются прерывистостью и значительным изменением толщин по площади залежи.

Большинство разрабатываемых крупных нефтегазовых месторождений находится на поздних стадиях разработки с высокой степенью обводненности добываемой продукции. При наличии неоднородности и прерывистости пластов степень их выработки значительно меняется по площади залежи. Горизонтальное положение ствола скважин может проходить в проектном пласте по интервалам с различным насыщением, пересекать заводненные интервалы.

При завершении бурения дальнейшие мероприятия по выбору интервалов освоения и обустройству скважины проводятся с учетом наличия продуктивных зон коллекторов. Информационное обеспечение оценки коллекторских свойств по горизонтальному положению при этом достигается проведением различных комплексов ГИС.

Исследования проводятся автономными приборами, спускаемыми на бурильных трубах. К настоящему времени по большинству пробуренных горизонтальных скважин комплекс ГИС включает изопараметрический каротаж аппаратурой ВИКИЗ, набор симметричных градиент-зондов, нейтронный каротаж, интегральный гаммакаротаж и инклинометрию.

Применяемые методы решают поставленную задачу частично и в большей степени на качественном уровне, и по физическим параметрам имеют ограничения при применяемой технологии проводки скважины.

На указанные выше методы электрического и нейтронного каротажа существенное влияние оказывают высокая минерализация бурового раствора и кавернозность скважин.

Кроме того, в терригенных полимиктовых коллекторах Западной Сибири наблюдается незначительная дифференциация по водородосодержанию аргиллитов, алевролитов и песчаников, что затрудняет литологическое расчленение разреза.

В сложно построенных карбонатных и эффузивных коллекторах комплекс градиент-зондов и электромагнитные методы практически не несут необходимой информации за счет высокого электросопротивления пород.

В связи со сложностью разреза при бурении горизонтального ствола в прерывистых пластах и сложно построенных коллекторах необходим комплекс ГИС, обеспечивающий получение количественных

параметров коллекторских свойств с точностью, сопоставимой при исследовании приборами на кабеле.

В ООО "Нефтегазгеофизика" серийно изготавливают полный перечень автономных приборов для выполнения следующих методов ГИС:

- инклинометрия (DL);
- двухзондовый боковой каротаж (2БК);
- многозондовый индукционный каротаж (5ИК);
- гамма-гамма-каротаж плотностной (6ГГК-П);
- компенсированный нейтронный каротаж (ЗННК);
- интегральный гамма-каротаж (2ГК);
- спектрометрический гамма-каротаж (СГК);
- акустический каротаж (АК);
- акустический профилемер на отраженных волнах (АП).

Каждый прибор является самостоятельным. Специальные соединительные устройства на концах прибора позволяют состыковать приборы друг с другом путем вертикальной сборки на устье скважины. Конструкция межприборного соединения обеспечивает возможность изгиба до 5°, что облегчает прохождение сборкой приборов участков интенсивного набора кривизны скважиной. Варианты комбинирования приборов для выполнения комплекса за две спускоподъемные операции приведены на рис. 1 и 2.

С целью привязки зарегистрированных данных к глубине каждый прибор имеет часы реального времени, показания которых записываются в каждый кадр данных. Эти часы перед началом спускоподъемных операций синхронизируются с часами реального времени обрабатывающего комплекса. Кроме того, приборы, по показаниям которых трудно отбивать интервалы стоянок, содержат в своем составе датчики акселерометров.

Привязка данных по глубине осуществляется одним из трех способов:

- по промеру бурового инструмента с использованием записанной в приборах информации о стоянках;
- по результатам измерений глубины наземными датчиками глубины, веса инструмента и положения клиньев станции ГТИ;
- по результатам измерений глубины автономным глубиномером, часы которого также синхронизируются с часами обрабатывающего комплекса.

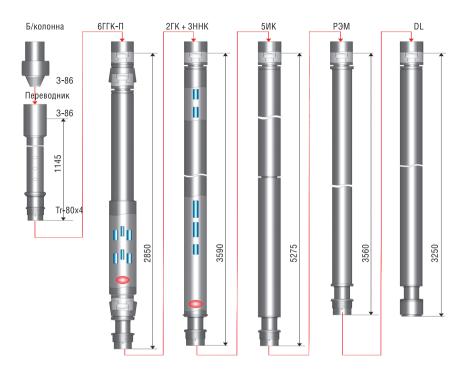


Рис. 1. Варианты сборок автономных приборов. Вариант 1. РЭМ – разделитель электромагнитный

Тестирование приборов, подготовка к каротажу, считывание данных из приборов в компьютер производятся с использованием специального кабеля через USB-порт.

Перечень имеющихся автономных приборов, решаемые задачи и параметры, получаемые для геологической интерпретации, приведены в табл.

К настоящему времени в силу различных организационных и экономических причин имеющиеся приборы поставлены производственным геофизическим предприятиям в различном сочетании. Полного комплекса автономных приборов ни в одном из промыслово-геофизических предприятий не имеется.

Анализ получаемой геофизической информации и результаты геологической интерпретации проведены по каждому методу в различ-

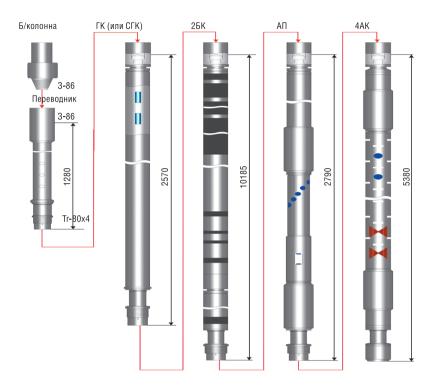


Рис. 2. Варианты сборок автономных приборов. Вариант 2

ных скважинах. Интерпретация получаемых данных проводилась с минимальным количеством методов, примененных в каждой скважине.

Анализ полученных данных показал высокую эффективность комплекса при решении поставленных задач. В литологически неоднородных коллекторах Западной Сибири предлагаемые электрические методы индукционного и бокового каротажа в сочетании с радиоактивными методами и учетом влияния профиля ствола горизонтального участка скважины позволяют выделить наиболее проницаемые интервалы, оценить коэффициенты общей и эффективной пористости. Получаемые при этом количественные параметры по точности сопоставимы с данными кабельных приборов в вертикальных и наклонных скважинах.

В сложно построенных карбонатных и эффузивных коллекторах из комплекса методов можно исключить индукционный каротаж.

Необходимые параметры для геологической интерпретации получаются по результатам измерений двойного бокового каротажа, радиоактивных и акустических методов.

Следует отметить, что проведение исследований двойным боковым каротажом в горизонтальных скважинах, пробуренных на высокоминерализованных буровых растворах, предпочтительнее электромагнитных методов индукционного и изопараметрического каротажа. Метод двойного бокового каротажа позволяет выделить проницаемые прослои во всех типах разрезов и коллекторов для данных условий бурения горизонтальных скважин.

Основные результаты применения комплекса методов ГИС на различных месторождениях и в разных горно-геологических условиях приведены на рис. 3, 4, 5, 6.

На рис. 3 в горизонтальном участке ствола скважины приведены исследования акустической профилеметрии, нейтронный и гаммакаротаж, двойной боковой каротаж и изопараметрический каротаж аппаратурой ВИКИЗ. По данным акустического профилемера диаметр горизонтальной части ствола отличается от номинального, наблюдается наличие каверн и синусоидальных отклонений от номинала за счет работы долота. Электромагнитные методы, особенно высокочастотные типа ВИКИЗ, при наличии высокоминерализованного бурового раствора максимально реагируют на ближнюю зону и искажены синусоидальными аномалиями против пласта-коллектора. Подобная картина отмечается на рис. 5. Показания нейтронного каротажа искажены влиянием диаметра ствола скважины до 2-3% по водородосодержанию. Наиболее информативны данные двойного бокового каротажа, позволяющие по приращению на зондах с высокой степенью достоверности выделять проницаемые интервалы. При наличии незначительной зоны проникновения показания большого зонда БК позволяют оценивать характер нефтегазонасыщенности.

На рис. 4 приведены результаты исследований комплексом методов радиоактивного каротажа (НКТ, Γ К) и многозондового индукционного каротажа (5ИК).

Замеры индукционного каротажа в меньшей степени подвержены влиянию ближней зоны ствола скважины из-за меньшей по сравнению с ВИКИЗ вертикальной разрешающей способности и использования более низких частот. Искажения отмечаются только на коротких зондах. Длинные зонды, имеющие высокую глубинность иссле-

Основные характеристики автономных приборов

Таблица

Глубинность метода, м	7	0,80	0,33	3,00
м расиленение, Вертикальное	9	0,15	0,15	0,35– 2,50
ноєвпвиД йинэдэмєи	2	0,2– 5000 Om·m	0,2– 5000 <i>Om·m</i>	3–2000 MCM/M
Измеряемые параметры	4	Зонд БК _б	Зонд БКм	Каналы активный, реактивный 3И 0,3 3И 0,5 3И 1,26 3И 1,26 3И 2,05
Решаемые задачи	ဇ	Выделение пластов и определение зоны про- никновения, определение УЭС пласта и зоны	проникновения. Выделение коллекторов, оценка характера нефтегазонасыщенности	Выделение электричес- ки однородных пластов и определение глубины зоны проникновения. Определение УЭС не- изменной части пласта и промытой зоны. Определение продоль- ного УЭС и оценка вер- тикальной анизотропии непроницаемых плас- тов и пластов без зоны проникновения. Оценка характера неф- тегазонасыщенности
Область применения	2	Для исследования сильно- пологих и горизонтальных участков открытого ствола нефтяных и газовых сква-	жин, заполненных буровым раствором на водной основе с сопротивлением от 0,03 до 20 Ом, с номинальным размером ствола до 300 мм	Для исследования сильно- пологих и горизонтальных участков открытого ствола нефтяных и газовых сква- жин, заполненных любым буровым раствором без маг- нитных добавок, с номи- нальным диаметром сква- жины до 400 мм
Марка прибора	-	Прибор двой- ного бокового каротажа ав- тономный 2БК	(БК-3+БК-5)-A	Прибор индук- ционного каротажа автономный 5ИК-А

Продолжение табл.

	0,40	0,50	0,35	0,40
	0,20-	r'ó	0,20-	°°
9	0,80	> 0,20	> 0,50	0,80
2	1–40%	1,7–3,0 e/cm³	100– 500 <i>MKC/M</i> 200– 500 <i>MKC/M</i>	0–250 мкР/ч
4	Водородосо- держание по- род, естест- венная гамма- активность пород	Объемная плотность пород	Интервальное время продольной и поперечной волн	Естественная гамма- активность пород
3	Литологическое расчле- нение разреза. Опреде- ление емкостно-фильт- рационных свойств и минерального состава горных пород	Литологическое расчленение разреза. Определение коэффициентов пористости	Литологическое расчленение разреза по упрутим свойствам горных пород. Определение коэффициентов и типов пронидаемых зон в сложно построенных коллекторах. Определение модулей упругости	Литопогическое расчленение разреза. Определение коэффициентов глинистости
2	Для исследования сильно- пологих и горизонтальных участков открытого ствола скважин диаметром 120–350 мм	Для исследования сильно- пологих и горизонтальных участков открытого ствола, заполненных буровым раст- вором любого состава, скважин диаметром до 196 мм	Для исследования сильно- пологих и горизонтальных участков открытого ствола, заполненных буровым раст- вором любого состава, сква- жин диаметром 127–216 мм	Для исследования сильно- пологих и горизонтальных участков ствола, заполнен- ных буровым раствором лю- бого состава с содержанием NaCI не более 300 г/м, в скважинах дияметром до
1	Прибор ра- диоактивного каротажа автономный (2ГК+3ННК)-А	Прибор плот- ностного гамма-гамма- каротажа автономный 6ГТК-П-А	Прибор акустического каротажа автономный 4АК-А	Прибор интегрального гамма- каротажа автономный ГК-А

Окончание табл.

7	-	1 1
9	0,20	1 1
2	55–200 MM	0–180°
4	Профиль ствола скважин	Зенитные углы наклона. Магнитные азимуты
3	Определение профиля ствола скважины по восьми внутренним радиусам в каждом поперечном сечении	Определение прост- ранственных координат ствола скважины
2	Для исследования сильно- пологих и горизонтальных участков ствола, заполнен- ных буровым раствором на водной или нефтяной осно- ве плотностью до 1,2 г/см ³ , в скважинах диаметром 127—216 мм	Для исследования необсаженных сильнопологих и горизонтальных участков ствола скважин, заполненных буровым раствором на немагнитной основе
1	Прибор акустического профилемера автономный АСПГ (9АП-А)	Автономный инклинометр ИММН-90A (DL)

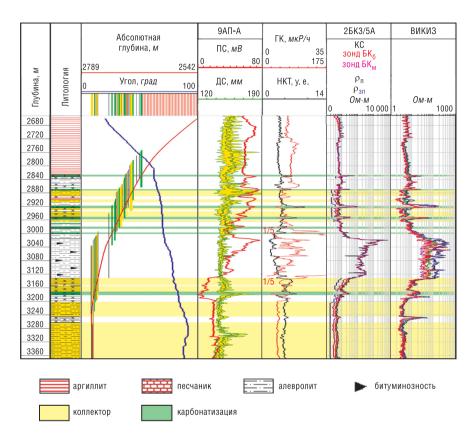


Рис. 3. Результаты исследований разреза горизонтальной скважины приборами 9АП-А и 2БК(БК-3+БК-5)-А

дований (табл.), позволяют определять сопротивление пласта незатронутой зоны практически без искажений.

На рис. 5 приведены результаты исследований комплексом радиоактивных методов нейтронного, плотностного, гамма-каротажа и ВИКИЗ+ПС. Исследования проведены в терригенном разрезе Западной Сибири.

По полученным данным максимальная информативность по выделению коллекторов достигается методом плотностного каротажа, где разница в плотности между аргиллитами и песчаниками составляет 0,1—

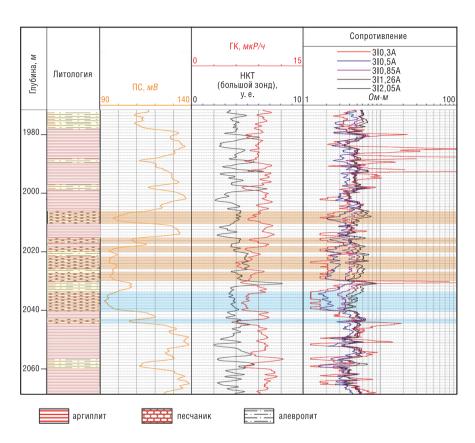


Рис. 4. Результаты исследований разреза горизонтальной скважины приборами 5ИК-А и (2ГК+3ННК)-А

0,15 г/см³, а также по результатам гамма-каротажа. Водородосодержание изменяется в незначительных пределах, имеет место погрешность определения диаметра ствола скважины. По методу ВИКИЗ выделение коллекторов затруднительно, возможно только определение ВНК. Совместная интерпретация методов нейтронного, плотностного и гамма-каротажа позволяет определить на количественном уровне общую и эффективную пористость, построить литологическую модель.

На рис. 6 приведены результаты исследований горизонтальной скважины, пробуренной в карбонатном разрезе, комплексом методов

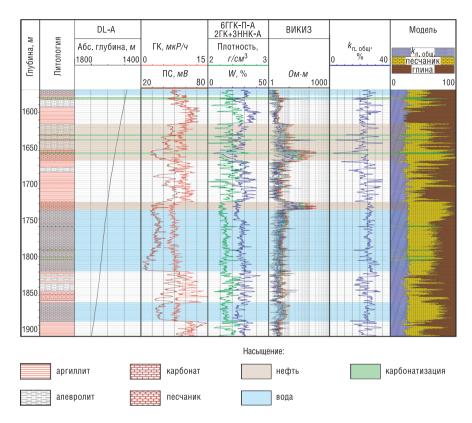


Рис. 5. Результаты исследований разреза горизонтальной скважины приборами 6ГГК-П-A и (2ГК+3ННК)-A

акустического, нейтронного и гамма-каротажа. По данным о волнах Стоунли выделены различные по проницаемости зоны разреза, определены коэффициенты и типы пористости коллекторов, произведено литологическое расчленение разреза.

Исследование методом ВИКИЗ ввиду высокого сопротивления горных пород и высокоминерализованного бурового раствора в данных условиях неэффективно. Для оценки удельного сопротивления горных пород и выделения проницаемых зон коллекторов данного типа разреза необходимо ввести в комплекс вместо методов индукционного каротажа и ВИКИЗ двойной боковой каротаж.

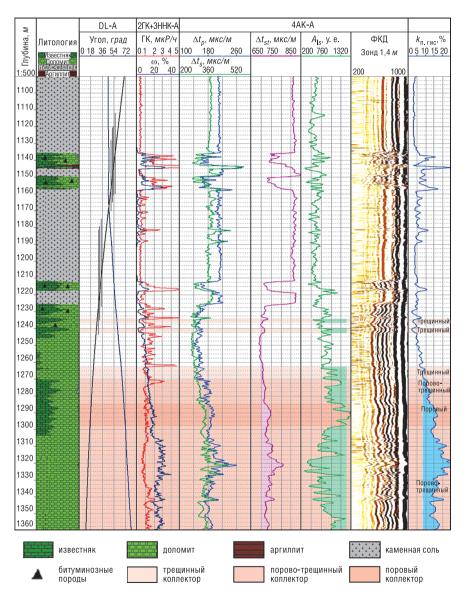


Рис. 6. Результаты исследований разреза горизонтальной скважины приборами (2ГК+3ННК)-A и 4АК-A

Основные выводы:

- создан комплекс серийных автономных приборов для исследований пологих и горизонтальных скважин;
- комплекс включает все методы, используемые в кабельном варианте для всех типов разрезов и условий проводки скважин;
- количественные и качественные параметры коллекторских свойств сопоставимы с данными, получаемыми приборами на кабеле.

Получена 17.07.08

УДК 550.832

В. А. Велижанин, В. Г. Черменский ООО "Нефтегазгеофизика"

К ВОПРОСУ О ПОГРЕШНОСТИ ОПРЕДЕЛЕНИЯ НЕФТЕНАСЫЩЕННОСТИ КОЛЛЕКТОРОВ ПО ДАННЫМ С/О-КАРОТАЖА АППАРАТУРОЙ АИМС

Рассмотрены вопросы контроля качества каротажных исследований текущей нефтенасыщенности породы аппаратурой АИМС.

Ключевые слова: горные породы, нефтенасыщенность, каротаж, точность определения.

В массовом порядке в России С/О-каротаж начал применяться для решения задачи оценки текущей нефтенасыщенности коллекторов с 1999 г. на базе аппаратуры АИМС. Исследования проведены в нескольких тысячах скважин. В методическом плане был пройден путь от так называемых "нормализованных отношений" [5] до "приращения кривой <C/O>" [6] и разложения спектров. В настоящее время основной для аппаратуры АИМС принята методика "приращения кривой <C/O>", модифицированная с учетом влияния глинистости коллектора на оценку нефтенасыщенности. Такое решение было обусловлено двумя факторами: во-первых, более высокой устойчивостью алгоритма, реализующего данную методику, и более высокой технологичностью указанной методики при тех же либо меньших требованиях к точности определения неконтролируемых и слабо контролируемых условий проведения каротажа, а именно: плотности цемента, диаметра скважины, минерализации пластового флюида и т. д.; вовторых, крайне ограниченным числом натурных моделей пластов. Последнее условие связано с выполнением действенного контроля результатов математического моделирования показаний аппаратуры, которые в дальнейшем должны использоваться в схемах с разложением регистрируемых спектров. Поскольку ряд требований к характеристикам аппаратуры С/О-каротажа зависит от используемой методики обработки, то ниже все рассуждения будут относиться к методике "приращения кривой <С/О>". Здесь также не будут рассматриваться погрешности оценки текущей нефтенасыщенности, обусловленные неконтролируемыми изменениями параметров ближней зоны

(диаметра скважины, толщины и диаметра обсадной колонны, плотности цемента и др.). Анализ влияния этих факторов был рассмотрен в ряде статей [1, 2, 4]. Однако с точки зрения текущего (на конкретной скважине) применения аппаратуры и выбранной методики обработки результатов измерений указанные погрешности не являются параметрами, контролирующими собственно качество проведенных каротажных исследований и их интерпретацию. Ниже рассмотрены вопросы контроля качества каротажных исследований при решении задачи оценки текущей нефтенасыщенности породы аппаратурой АИМС с позиции инструментальной погрешности метода и погрешности методики выполнения измерений и обработки их результатов.

Модель оценки текущей нефтенасыщенности коллекторов $k_{\rm H}$ в рамках методики "приращения кривой <C/O>" и неизменности условий измерений в скважине для случая терригенных отложений (без учета глинистости) записывается в следующем виде:

$$k_{\text{H}\omega} = (\langle \text{C/O} \rangle_{\text{onop}} - \langle \text{C/O} \rangle)/\text{DCOR},$$

$$k_{\text{H}} = k_{\text{H}\omega} \times \omega / k_{\text{п.общ}},$$
 (1)
$$\text{DCOR} = g \times (\sigma_{\text{H}} / 0.80) \times \omega / (1 - \omega) \times (c + d \times V_{\text{Kap}}),$$

где ω — общее водородосодержание породы; $k_{\text{п.общ}}$ — общая пористость породы, $\sigma_{\text{н}}$ — плотность нефти в пластовых условиях; g — коэффициент чувствительности аппаратуры к насыщению; c и d — константы палеточных зависимостей аппаратуры; $V_{\text{кар}}$ — содержание карбонатных примесей в породе. Опорная кривая <C/O $>_{\text{опор}}$ определяется выражением

$$<$$
C/O $>_{\text{опор}} = <$ C/O $>_{\text{вода}} - (\omega_{\text{вода}} - \omega) \times (A + B \times V_{\text{кар}}),$ (2)

где <C/O> – отношение счетов в каналах неупругого излучения углерода и кислорода; <C/O> в опорном, водонасыщенном пласте; ω водородосодержание опорного, водонасыщенного пласта; A и B – константы палеточных зависимостей аппаратуры. Кривая "карбонатности" для терригенного разреза определяется выражением

$$V_{\text{kap}} = (\langle \text{Ca/Si} \rangle - \langle \text{Ca/Si} \rangle_{\text{onop}})/\Delta \langle \text{Ca/Si} \rangle,$$

$$\Delta \langle \text{Ca/Si} \rangle = D + E \times \omega,$$

$$\langle \text{Ca/Si} \rangle_{\text{onop}} = \langle \text{Ca/Si} \rangle_{\text{necq}} + C \times (\omega_{\text{necq}} - \omega),$$
(3)

где <Ca/Si> — отношение счетов в каналах неупругого излучения кальция и кремния; <Ca/Si> — значение <Ca/Si> в опорном пласте песчаника; <Ca/Si> — опорная кривая <Ca/Si> для расчета "карбонатности" коллекторов; $\Delta <$ Ca/Si> — разность значений <Ca/Si> в известняке и песчанике; C, D, E — константы палеточных зависимостей аппаратуры. Здесь опущено обоснование получения модели (1—3). Оно приведено в методическом руководстве [3].

В соответствии с моделью (1-3) для расчета $k_{\rm H}$ и принятыми выше ограничениями на условия проведения измерений погрешность оценки текущей нефтенасыщенности коллекторов в рамках методики "приращения кривой <C/O>" определяется:

- погрешностью кривых <C/O> и <Ca/Si>, полученных по спектру зарегистрированного неупругого гамма-излучения;
- погрешностью кривой общего водородосодержания породы;
- погрешностью "палеточных зависимостей" <C/O> и <Ca/Si> от пористости, нефтенасыщенности и состава породы, диаметра скважины и обсадной колонны;
- погрешностью геолого-технических параметров условий проведения каротажа (температура, давление, плотность нефти).

Рассматривая указанные погрешности независимыми, среднеквадратическую погрешность определения $k_{\scriptscriptstyle \rm H}$ можно записать в виде

$$\delta k_{H} = k \times ((\delta < C/O >)^{2} + (\delta < Ca/Si >)^{2} + (\delta \omega)^{2} + (\delta g)^{2} + ...)^{1/2},$$
 (4)

где δ <C/O>, δ <Ca/Si>, $\delta\omega$, δg , ... – погрешности <C/O>, <Ca/Si>, ω , g и т. д. в единицах погрешности $k_{\rm H}$.

Геолого-технические параметры всегда, а кривая водородосодержания породы чаще всего являются внешними по отношению к аппаратурно-методическому комплексу АИМС. В предположении неизменности геолого-технических условий измерений погрешность определения $k_{\rm H}$ за счет этих факторов в основном исключается используемой методикой, а именно, введением опорных по насыщению и литологии пластов. В противном случае погрешность определения $k_{\rm H}$ непредсказуема. При определении пористости погрешность измерения $k_{\rm H}$ в соответствии с (1–3) в большей степени определяется случайной составляющей погрешности определения водородосодержания породы. Величина этой погрешности примерно пропорциональна погрешности определения пористости. Систематическая составляющая погрешности определения пористости (водородосодержания)

породы в 1,5–2 раза меньше (по сравнению со случайной составляющей) влияет на погрешность определения $k_{\rm H}$. В целом погрешность определения нефтенасыщенности коллекторов за счет этих факторов не превышает 4–5% абс.

Погрешность "палеточного обеспечения" в приведенной выше модели имеет две составляющие. Первая составляющая погрешности определяется достигнутым уровнем точности зависимостей <C/O> и <Ca/Si> от пористости, нефтенасыщенности и состава породы, диаметра скважины и обсадной колонны. В силу ограниченного числа натурных моделей пластов в полном объеме оценить данную погрешность не представляется возможным. Ее оценка в значительной степени носит экспертный характер и не превышает 5% абс. в пересчете на нефтенасыщенность. Вторая составляющая погрешности определяется качеством изготовления и настройки аппаратуры. Опыт производства и эксплуатации аппаратуры АИМС показал, что чувствительность к нефтенасыщенности для разных комплектов аппаратуры изменяется в диапазоне ±10-15% относительно некоторого среднего прибора, а чувствительность к литологии составляет ±5-7%. Причины такого разброса, по-видимому, комплексные. Это и неточности в изготовлении зонда, и погрешности в настройке и характеристиках спектрометрического тракта аппаратуры, и возможно, изменение параметров генератора нейтронов при используемой схеме вычитания захватного гамма-излучения. Поскольку погрешность чувствительности к литологии связана с погрешностью определения k_{H} в рассматриваемой методике коэффициентом, равным примерно 0,2 [3], то в рассматриваемой технологической схеме не предполагается периодического контроля данного параметра. В случае чувствительности к нефтенасыщенности g оцениваемое значение $k_{\scriptscriptstyle \rm H}$ просто обратно пропорционально значению этого параметра. Неучет данного фактора приводит к ошибке определения нефтенасыщенности в 10-15% отн., что потребовало ввода в технологическую схему работы с аппаратурой АИМС периодического определения и контроля параметра чувствительности к насыщению на метрологической установке и учета результата измерений в последующих этапах обработки. В целом погрешность "палеточного обеспечения" в приведенной выше модели расчета нефтенасыщенности и используемой технологической схеме не превышает 5-7% абс.

Погрешность кривых <C/O> и <Ca/Si> определяется, прежде всего, статистической погрешностью измерений, параметрами спектро-

метрического тракта (линейностью и точностью энергетической шкалы, энергетическим разрешением) и лишь потом алгоритмом расчета <C/O> и <Ca/Si>. Поскольку составляющие погрешностей кривых <C/O> и <Ca/Si> являются независимыми, то собственно погрешности $\delta<$ C/O> и $\delta<$ Ca/Si> можно рассматривать как среднеквадратические. Влияние алгоритмов расчета кривых <C/O> и <Ca/Si> и параметров спектрометрического тракта исследовалось как по результатам реальных измерений аппаратурой АИМС, так и на материалах математического моделирования [1–4]. Результаты этих работ, с одной стороны, определили требования к параметрам спектрометрического тракта и алгоритмам расчета кривых <C/O> и <Ca/Si>, а с другой стороны, позволили выработать технологическую схему работы с аппаратурой АИМС – от настройки до решения конечной задачи. Суть этих требований состоит в следующем [6]:

- на базе геофизического предприятия с определенной периодичностью выполняется настройка/калибровка аппаратуры, которая включает:
 - выставление энергетической шкалы;
 - контроль линейности шкалы энергий и разрешения аппаратуры;
 - контроль/измерение чувствительности аппаратуры;
 - контроль/настройку выхода генератора нейтронов;
 - запись опорных спектров в калибровочной установке с известными характеристиками. Пример протокола базовой калибровки аппаратуры АИМС приведен в табл.;
- при проведении измерений в скважине энергетическая шкала аппаратуры автоматически выставляется и в течение всего каротажа удерживается в соответствии с энергетической шкалой записанного опорного спектра;
- на этапе обработки результатов измерений в скважине проводятся:
 - повторная точная привязка энергетической шкалы зарегистрированных спектров к энергетической шкале опорного спектра;
 - выделение гамма-спектров неупругого рассеяния и радиационного захвата нейтронов, очищенных от взаимного наложения;
 - расчет кривых <C/O> и <Ca/Si>.

На все указанные технологические этапы определены и выставлены требования с позиции определения текущей нефтенасыщенности, которые приведены в методическом руководстве [3]. Выполнение этих

Таблица Пример протокола базовой калибровки аппаратуры АИМС-СП

ПРОТОКОЛ	
базовой калибровки аппаратуры АИМС-СП	
Организация:	
Дата проведения калибровки: 28-01-07	
Номер калибруемой аппаратуры: 16	
Калибруемый зонд – ИНГКС-С/О	
Используемое оборудование:	
– калибровочная установка номер	1
– генератор нейтронов номер	074528
Результаты калибровки:	
– отношение каналов углерод/кислород в воде, отн. ед.	0,49
– погрешность отношения <cor> в воде, %</cor>	1,2
– отношение каналов кальций/кремний в воде, отн. ед.	1,38
– погрешность отношения <liri> в воде, %</liri>	0,8
– скорость счета в захватном канале, <i>имп/с</i>	24 251
– скорость счета в неупругом канале, <i>имп/с</i>	31 023
– сечение захвата нейтронов, с. u.	26,6
– отношение каналов углерод/кислород в нефти, отн. ед.	0,93
– погрешность отношения <cor> в нефти, %</cor>	1,2
– отношение каналов кальций/кремний в нефти, отн. ед.	1,37
– погрешность отношения <liri> в нефти, %</liri>	0,8
– чувствительность аппаратуры по углероду, %	50,7
– энергетическая чувствительность, <i>кэВ/канал</i>	36,1
– линейность энергетической шкалы, %	98,9
– разрешение спектрометрического канала, %	10,8
ЗАКЛЮЧЕНИЕ	
Модуль АИМС-СП номер 16 годен к эксплуатации	
Следующая калибровка должна быть проведена не позднее	28-04-07
Исполнители:	

требований позволяет минимизировать ошибку определения нефтенасыщенности за счет рассматриваемых факторов до 3-5% абс. в пересчете на $k_{\rm H}$.

В целом суммарная, но без учета статистики, среднеквадратическая погрешность определения нефтенасыщенности при выполнении всех требований технологии работ с аппаратурой АИМС составляет 7–9%. Статистическая погрешность кривых <C/O> и <Ca/Si> определяется статистической погрешностью счетов в "окнах" углерода, кислорода, кальция и кремния, полученных интегрированием спектра гамма-квантов неупругого рассеяния нейтронов. При выходе генератора нейтронов на уровне $6-8\times10^7$ H/c и используемых в аппаратуре АИМС детекторах гамма-квантов типичная скорость счета в перечисленных "окнах" изменяется от 600-800 umn/c (для углерода) до 2000-2400 umn/c (для кальция). При указанных выше скоростях счета в "окнах" для обеспечения суммарной погрешности (приведенной к пласту мощностью 1,5 M) определения нефтенасыщенности не выше 10% скорость каротажа при двукратном проходе интервала исследований не должна превышать 45-55 M/4.

Резюмируя сказанное выше, можно выделить следующие направления работ для снижения погрешности определения нефтенасыщенности аппаратурой АИМС, а именно:

- уточнение и расширение объема палеточного обеспечения аппаратуры, что прежде всего требует заметного расширения существующего парка аттестованных натурных моделей пластов, если не для построения палеток, то хотя бы для контроля и привязки результатов математического моделирования;
- повышение термостабильности спектрометрического тракта аппаратуры и особенно в направлении *сохранения линейности энергетической шкалы* при изменении температуры, контролировать и тем более корректировать которую (линейность) в процессе каротажа и после его выполнения не всегда представляется возможным;
- совершенствование метрологического контроля аппаратуры АИМС и в целом технологии проведения работ;
- совершенствование либо разработка методики, менее чувствительной к параметрам ближеней зоны (диаметру скважины, плотности цемента, толщины обсадной колонны и др.).

Есть и другие направления исследований, но приведенные выше являются основными для решения задачи повышения точности определения нефтенасыщенности коллекторов аппаратурой АИМС. Необходимость работы по расширению объема и уточнению палеточного обеспечения касается всех типов используемой отечественной

аппаратуры С/О-каротажа, а необходимость совершенствования метрологического обеспечения относится ко всей эксплуатируемой отечественной аппаратуре. Однако в последнем случае возможны различия в подходах и требованиях.

ЛИТЕРАТУРА

- 1. Велижанин В. А., Лобода Н. Г., Меженская Т. Е. и др. Некоторые вопросы методического обеспечения аппаратуры АИМС при определении текущей нефтенасыщенности коллекторов // Геофизический вестник. 2003. № 12. С. 10–16.
- 2. Велижанин В. А., Лобода Н. Г., Черменский В. Г. Исследование погрешности определения нефтенасыщенности коллекторов по данным С/О-каротажа // НТВ "Каротажник". Тверь: Изд. АИС. 2006. Вып. 2–4. С. 144–153.
- 3. Инструкция по проведению импульсного спектрометрического нейтронного гамма-каротажа аппаратурой серии АИМС и обработке результатов измерений при оценке текущей нефтенасыщенности пород (терригенные отложения) // МИ 41-17-1399-04. Тверь: Нефтегазгеофизика. 2004.
- 4. *Лобода Н. Г., Велижанин В. А., Черменский В. Г.* Определение содержания карбонатных примесей в терригенных породах по данным спектрометрического нейтронного гамма-каротажа // НТВ "Каротажник". Тверь: Изд. АИС. 2005. Вып. 2. С. 38–45.
- 5. Caldwell R. L., Mills W. R., Hickman J. B. Gamma-radiation from inelastic scattering of 14 MeV neutrons by common earth elements. Nucl. Sci. and Eng. 1960. Vol. 8. N 3. P. 173–178.
- 6. Jacobson A., Ethridge R. and Simpson G. A new small-diameter, high-performance reservoir monitoring tool. SPWLA 39th Annual Logging Symposium. May 26–29. 1998.

Получена 11.08.08

УДК 550.832

Э. Р. Хаматдинова ООО "Нефтегазгеофизика"

ЛИТОЛОГИЧЕСКОЕ РАСЧЛЕНЕНИЕ ЭФФУЗИВНЫХ КОЛЛЕКТОРОВ ПО ДАННЫМ ГИС

Приведены количественные и качественные критерии литологического расчленения вулканогенных разрезов Западной Сибири, проанализирована эффективность стандартного комплекса ГИС при решении данной задачи.

Ключевые слова: эффузивные отложения, литотипы пород, керновые данные, геофизические методы.

Вулканогенные коллекторы в разрезах Западной Сибири

При разведочном бурении пород фундамента доюрского возраста в Западно-Сибирской нефтегазоносной провинции выявлены значительные залежи нефти в вулканогенных коллекторах. Доюрский эффузивный комплекс датируется триасово-пермским возрастом.

По результатам исследования керна вулканогенные породы представлены мощной толщей эффузивных коллекторов кислого, среднего и основного состава. Кислые породы представлены переслаиванием трахитовых, дацитовых, риолитовых, риодацитовых лав, туфов, лавобрекчий, риодацита и трахириодацита, кластолав, перлита, пемз и гидротермально преобразованных пород типа кластита. Основные породы в основном представлены базальтами и амфиболитами.

Первоочередной задачей геофизических исследований скважин (ГИС) при разведочном и эксплуатационном бурении является разделение пород на литотипы с целью выявления перспективных интервалов для освоения и разработки. Решение поставленной задачи производится на основе лабораторных определений физических свойств керна пород и данных ГИС. Зная (по керну) минералогический состав и физические свойства породообразующих минералов исследуемых пород, можно построить палеточные зависимости (для методов определения по ГИС литологии и пористости – АК, ГГК, ННК) и определить физические свойства этих пород (акустические,

радиоактивные). По полученным данным рассчитывается процентное содержание каждого литотипа.

В отличие от осадочных эффузивные породы, обладающие коллекторскими свойствами, имеют близкий минералогический состав и различаются в большинстве случаев по структурным признакам, что не дает возможности провести литологическое расчленение разреза, используя стандартный комплекс. Однако разнообразие структуры эффузивных пород взаимосвязано с различием их физических свойств, и решение поставленной задачи возможно расширенным комплексом ГИС.

Возможности литологической диагностики эффузивных коллекторов по петрофизическим данным

Необходимость литологического расчленения вскрываемой толщи разреза связана с наличием продуктивных коллекторов в определенных типах пород, имеющих сложное строение. Минералогический состав эффузивных пород и разнообразие морфологии их емкостного пространства достаточно детально определены лабораторными исследованиями керна [5].

По результатам исследования шлифов можно сделать вывод о том, что емкостные пространства лав и туфов отличаются. В лавах присутствуют емкости разгазирования (первичные) и емкости перлитизации и выщелачивания (вторичные). Перлитизация ведет к образованию трещин в породе, а процессы выщелачивания носят гидротермальный характер и ведут к образованию каверн. Таким образом, в лавах емкостное пространство представлено трещинами либо трещинами и кавернами. Наряду с этим в определенных типах пород отмечается наличие закрытых пор и залеченных вторичными минералами трещин. В туфовых разностях емкостное пространство формируется за счет неплотной упаковки частиц и их спекания. Вторичные процессы в этих породах протекают более интенсивно, чем в других. В шлифах наблюдаются емкости разной формы, а также следы выщелачивания, за счет чего поры становятся фильтрующими.

В силу ограниченности стандартного комплекса ГИС возникла необходимость использования для литологического расчленения эффузивных пород различных приемов обобщения результатов ГИС,

данных анализа керна, а также математического моделирования методом Монте-Карло данных нейтрон-нейтронного каротажа.

Обобщены результаты исследований 2600 образцов керна и данные ГИС по 26 скважинам. Исследуемая толща составляла от 100 до 600 м. Рассматривались физические параметры, которые можно оценивать методами ГИС: это водородосодержание, общая и минералогическая плотности, скорости продольных и поперечных волн.

При отсутствии данных о водородосодержании образцов пород и определений акустических характеристик были проанализированы объемная и минералогическая плотности, определенные по керну. Результаты представлены на рис. 1. Относительно выдержанный состав кислых эффузивных пород определяет стабильность их минералогической плотности. Для всех разновидностей пород среднее значение минералогической плотности составляет $2,64\ elcm^3$.

При относительном постоянстве минерального состава эффузивов кислого состава [6] наблюдаются отличия по значениям объемной плотности в пределах 2,2-2,55 z/cm^3 (в зависимости от литотипов) с

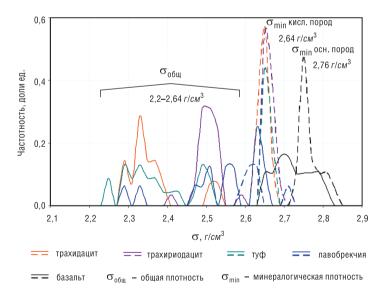


Рис. 1. Зависимости минералогической σ_{min} и общей $\sigma_{\text{общ}}$ плотностей от минерального состава эффузивных пород [4]

частичным перекрытием диапазонов изменения. Это может быть связано со сложной структурой емкостного пространства и переслаиванием пород (что подтверждается описанием керна). Основные породы относятся к более плотным с минералогической плотностью $2,76 \ \text{e/cm}^3$, значения общей плотности изменяются в пределах $2,65-2,85 \ \text{e/cm}^3$.

Анализ керновых данных показывает, что параметр плотности может быть весьма информативен для решения поставленной задачи при условии, что будет учитываться структура емкостного пространства изучаемых пород.

Поскольку данных о водородосодержании исследованных образцов керна нет, для изучения пород, слагающих разрез, было проведено математическое моделирование по методу Монте-Карло. Получены распределения водородосодержаний для пород разного минералогического состава (табл. 1) и общей пористости (рис. 2, а). По значениям водородосодержания слагающие эффузивную толщу кислые породы различаются между собой незначительно, что объясняется близким химическим составом и практически одинаковой минералогической плотностью этих пород. Значительные отличия наблюдаются для средних и основных пород и для перлитов.

Дополнительно был выполнен статистический анализ для определения по литотипам пород средневероятных значений водородосодержания, полученных в результате ГИС (рис. $2, \delta$). Для этого результаты обработки геофизических данных по разрезу сопоставлялись с результатами исследования керна (полевыми и лабораторными) и породы были разделены условно на пять литотипов.

Отмечается закономерное смещение значений водородосодержания в сторону увеличения от плотных к измененным породам в зависимости от типа и структуры емкостного пространства. С большей степенью вероятности возможно выделение неизмененных пород, не имеющих коллекторов. Можно сказать, что увеличение водородосодержания – качественный признак разделения пород по литотипам и коллекторским свойствам.

Лабораторных определений акустических свойств эффузивных пород не проводилось. Было проведено сопоставление (по 13 скважинам) значений интервальных времен продольной (Δt_P) и поперечной (Δt_S) волн со значениями общей пористости, рассчитанными по комплексу ННК-ГГК-АК (рис. 3). Из рис. 3 видно, что Δt_P и Δt_S для разных скважин отличаются друг от друга, что наводит на мысль о воз-

Таблица 1 Основные усредненные характеристики изверженных (вулканогенных) пород [1, 2, 3]	Химический состав, % Структура Цвет	AL ₂ O ₃ Fe ₂ O ₃ FeO MgO CaO Na ₂ O K ₂ O	13 1,4 1 0,5 1,2 7,9 ское стекло красного до 50–100 %	13 0,5 1 1 4,0 ское стекло	14,5 1,6 0,9 2 7,6 Массивная зеленый	16,5 2,4 1,9 1,4 3,5 6,7 ная Стекловид- Серый, зелено- Стекловид- Стекловидный Стекловидный	16,8 0,3- 1,3- 1,1 3,3 7,4 массивной серый изсивной	16,5 2,9 1,8 0,8 2,0 10,3 Порфировая желтоватый	17 3,3 3,1 2,7 5,8 3,3 Порфировая Серо-черный с зеленым оттен-ком
лканс			7,9	4,0	7,6	6,7	7,4	10,3	3,3
іх (ву	%		1,2	-	2	3,5	8,9	2,0	5,8
(енны	Химический состав, %	MgO	9,0		6,0	1,4	1,1	8,0	2,7
зверж			-	-	1,8	1,9	1,3–	1,8	3,1
з характеристики из		Fe ₂ O ₃	1,4	9,0	1,6	2,4	0,3-	2,9	3,3
		AL ₂ O ₃	13	13	14,5	16,5	16,8	16,5	17
		SiO ₂	73	72	70	66	65	63	60
едненны	Плот- ность, <i>a/cм</i> ³	Минера- логиче- ская	2,64	2,64	2,65	2,66	2,66	2,63	2,68
Основные уср	Порода		Риолит (липарит)	Перлит (вулканическое стекло)	Риодацит (гранит)	Дацит	Гранодиорит (аналог дацита в вулканогенных отложениях)	Трахит	Андезит
		Кислые (рН < 7)				(∠ ≈ H	d) әині	qədə	

Окончание таблицы 1

				٠.
Цвет	Зеленовато- серый	Темно-серый	Темный до серо- го	
Структура	Структура			Массивная
	Na ₂ O K ₂ O	3,2	3,5	4,5
.0	CaO	6,7	8	0,6
став, %	MgO	4,4 4,1 6,7	7	6,2–9
ий сос	FeO	4,4	4–9	6,4-
Химический состав, %	Fe ₂ O ₃	3,1	5	5,4-3 6,4- 6,2-9 9,0
×	AL ₂ O ₃	16,6	до17	49–46 15,7
	SiO ₂	22	48	49–46
Плот- ность, <i>e/cм</i> ³	HOСТЬ, e/cм³ Mинера- SiO2 AL2O3 Fe2O3 FeO MgO CaO Na2O ская K2O			2,78
Порода	Порода		Долерит (в траппах)	Базальт (аналог габбро, эффу- зивный аналог долерита)
	Основные (рн > 7) Диорит (в трапі габбро, зивный долери			

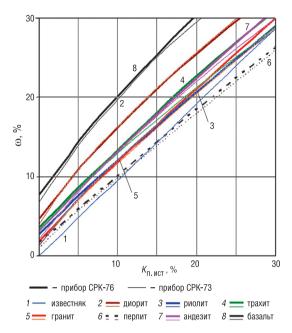


Рис. 2, а. Зависимость показаний аппаратуры типа СРК от состава и общей пористости эффузивных пород [4]

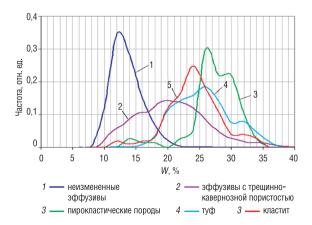


Рис. 2, б. Распределения водородосодержания (W) для различных литотипов кислых эффузивных пород

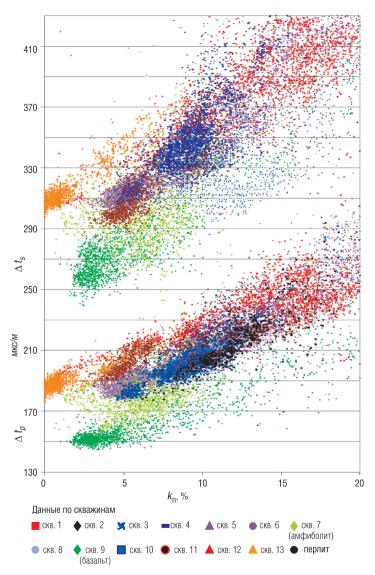


Рис. 3. Сопоставление значений интервальных времен продольной (Δt_p) и поперечной (Δt_s) волн со значениями общей пористости, рассчитанными по комплексу ННК-ГГК-АК [4]

можности разделения эффузивных пород на литотипы по данным акустического каротажа. Четко выделяются породы основного состава – базальты и амфиболиты.

Количественные критерии разделения литотипов пород

Из приведенных данных видно, что каждый рассмотренный физический параметр (плотность, водородосодержание, скорости продольных и поперечных волн) обладает определенной разрешающей способностью при определении литотипов пород. Наряду с этим каждый отдельно рассмотренный физический параметр имеет существенные ограничения. По отдельным литотипам имеют место значительные перекрытия по значениям их физических свойств в зависимости от структуры емкостного пространства. Указанные ограничения существенно снижаются при комплексном сопоставлении полученных данных.

Большинство необходимых физических параметров с необходимой точностью и детальностью определяются по данным ГИС. Использование результатов геофизических скважинных исследований позволяет по достаточно большой статистической выборке определить количественные показатели, позволяющие с большой степенью вероятности выделить основные типы эффузивных пород, перспективных на наличие коллекторов.

Чтобы разделить породы по литотипам, необходимо найти количественные критерии. С этой целью был проведен статистический анализ физических параметров, измеряемых методами ГИС. Анализ сводился к построению двумерных сопоставлений полученных данных. Результаты полученных данных и объем статистических исследований приведены в табл. 2 и представлены на рис. 4.

Прежде всего были проведены сопоставления значений общей плотности, водородосодержания и скорости продольных волн. При подобном сопоставлении видно, что только комплексное изучение подобных связей в различных сочетаниях позволяет с достаточно высокой вероятностью выделять основные литотипы эффузивных пород, слагающих разрез. При сопоставлении параметров (σ , $clcm^3$, ω , %) (рис. 4, δ) однозначно выделяются неизмененные плотные кислые эффузивы (область l), базальты (область l), трещинно-кавернозные эффузивы (область l) и кластиты (область l). Неоднозначно разделяются туфы и лавобрекчии (область l). При сопоставлении параметров l0 и l1 и l2 l2 l3 и l4 l5 l7 и l6 l7 l8 l9 и l9 l9

Таблица 2 Средневероятные показатели физических параметров при литологическом расчленении эффузивных пород

Литотипы пород	Коли- чество иссле- дован-	Коли- чест- во опре- деле- ний	Средние значения геофизических параметров			Пределы измене- ния параметров		
	ных сква- жин		$\Delta t_{ ho},$ MKC/M	ω, %	σ, <i>г/см</i> ³	Δt_p , MKC/M	ω, %	о, г/ см³
Эффузивы неизменен- ные	10	5725	210	12	2,5	190– 215	8– 15	> 2,5
Эффузивы трещинно- кавернозные	10	4570	235	18	2,4	220– 270	12– 27	2,25– 2,45
Пирокласти- ческие по- роды (ла- вобрекчии, туфоконгло- мераты)	8	1445	280	> 27	2,27	> 270	> 27	< 2,25
Туфы	6	863	258	25	2,4	240– 280	20– 26	2,28– 2,5
Кластиты	2	228	250	24	2,62	230– 260	20– 26	2,5– 2,7
Базальты	9	117	180	8	2,7	170– 190	4– 10	2,65– 2,8

(рис. 4, ϵ) туфы и лавобрекчии выделяются с высокой степенью вероятности, недостаточно однозначно выделяются плотные и трещинно-кавернозные эффузивы. Из представленных данных наименее информативны сопоставления Δt_p и σ , ϵ/cm^3 . Достаточно высокая эффективность разделения литотипов достигается лишь для однородных пород. В случае переходных разностей пород эффективность значительно снижается.

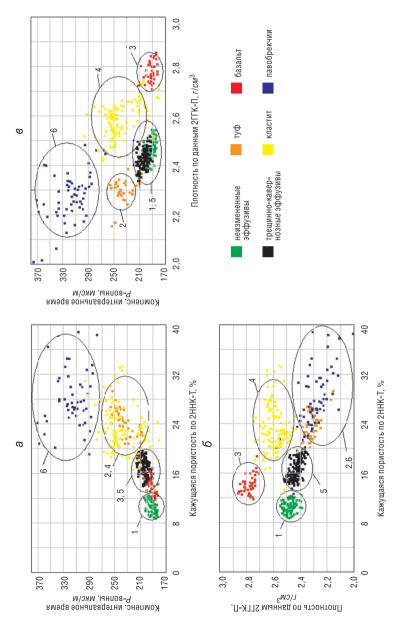


Рис. 4. Сопоставление геофизических параметров для различных литотипов пород, определенных по керну

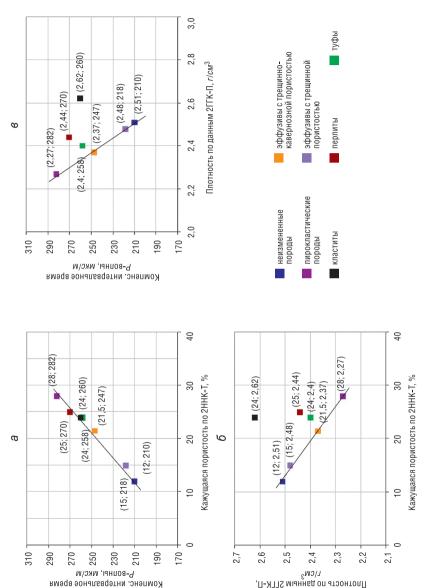


Рис. 5. Средневероятные значения водородосодержания, общей плотности и скорости продольных волн

С целью нахождения количественных критериев разделения пород по литотипам на основе измеряемых методами ГИС физических параметров проведен статистический анализ полученной информации. Средние значения и пределы изменений величин водородосодержания, плотности и скоростей продольных волн приведены в табл. 2 и на рис. 5. По полученным данным вероятность разделения указанных однотипных пород по литотипам достаточно высока и составляет порядка 80% для трещинно-кавернозных эффузивов, туфов и лавобрекчий и близка к 100% для базальтов, плотных эффузивов и кластитов.

Полученные данные опробованы при интерпретации результатов ГИС по скважинам с отбором керна и подтверждаются результатами исследования по выделению приточных интервалов. По большинству скважин получены удовлетворительные результаты. Выделенные по ГИС литотипы пород совпадают с керновыми данными.

Результаты применения полученных количественных критериев (для физических параметров) приведены на рис. 6. В приведенном разрезе выделено несколько литотипов пород, в том числе перспективных на наличие коллекторов. Выделенные по ГИС литотипы совпадают с керновыми данными. В перспективных отложениях получены стабильные притоки нефти и воды (по данным промысловых геофизических исследований).

Результаты и выводы

Первоочередной задачей ГИС при разведочном и эксплуатационном бурении является разделение пород на литотипы по данным комплекса методов с целью выделения перспективных интервалов для освоения и разработки.

- Строение емкостного пространства кислых эффузивных пород существенно зависит от их литотипа, что подтверждается многочисленными лабораторными исследованиями кернового материала.
- Для выявления перспективных литотипов пород необходимы количественные и качественные критерии. Современные методы промысловой геофизики при комплексном изучении разрезов скважин позволяют решать поставленную задачу.
- Приведенный анализ результатов лабораторных исследований керна и методов ГИС позволил оценить величины и пределы из-

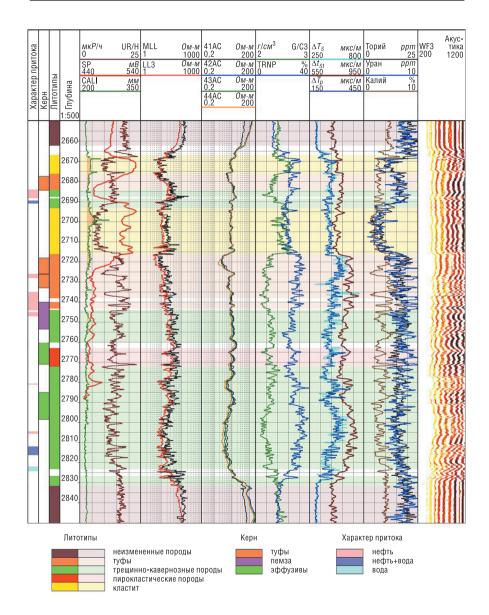


Рис. 6. Литологическое расчленение эффузивного разреза по данным ГИС

менения количественных критериев по определенным физическим свойствам пород для литологического расчленения разреза и выбор перспективных интервалов для опробования.

ЛИТЕРАТУРА

- 1. Геологический словарь. М.: Недра. Т.1-2. 1973.
- 2. Горная энциклопедия. М.: Сов. энциклопедия. Т. 1-5. 1984-1991.
- 3. 3аварицкий A. H. Изверженные горные породы. М: Изд. Академии наук СССР, 1956.
- 4. Отчет ООО "Нефтегазгеофизика" для ОАО "Сургутнефтегаз" "Совершенствование методики количественной интерпретации данных ГИС триасовых отложений Рогожниковского месторождения". гг. Тверь-Сургут, 2008.
- 5. Отчет "СургутНИПИнефть", Тюменское отделение "Результаты изучения керна по скважине 735 Рогожниковского лицензионного участка". г. Тюмень, 2004.
- 6. Петрология магматических и метаморфических пород. Л.: Недра, 1973. Исследования керна из скважин Рогожниковского месторождения (колонка минералогической плотности).

Получена 06.08.08