УДК 550.832

Н. Г. Козыряцкий ООО "Нефтегазгеофизика"

ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА СТАБИЛЬНОСТИ СТАНДАРТНЫХ ОБРАЗЦОВ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ДЛЯ ПЕТРОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ

Описана методика проведения исследований по измерению удельного электрического сопротивления стандартных образцов открытой пористости, приведены результаты экспериментов.

Ключевые слова: петрофизика, метрология, удельное электрическое сопротивление, керн, стандартные образцы.

Удельное электрическое сопротивление (УЭС) является одной из важнейших характеристик пород-коллекторов. Теоретические и методические основы определения УЭС образцов горных пород, а также функциональная взаимосвязь УЭС с другими петрофизическими параметрами широко освещены в литературе [2, 5]. Измерения УЭС образцов горных пород, направленные, в первую очередь, для петрофизического обоснования количественной интерпретации ре-

зультатов электрических методов каротажа, носят массовый характер и выполняются практически во всех петрофизических лабораториях. В связи с этим требования к точности лабораторных измерений УЭС керна, также как и требования к системе метрологического обеспечения этих измерений, достаточно высоки. Однако отсутствие единых требований к петрофизической аппаратуре и точности определения искомых параметров, что особо характерно для УЭС, приводит к тому, что определения УЭС керна в производственных организациях выполняются на различных по конструкции установках, изготавливаемых зачастую собственными силами. На этих установках реализуются различные способы измерения УЭС, которые могут быть отнесены либо к методу сравнения в равновесном режиме, либо к методу непосредственной оценки.

Сложность определения УЭС образцов горных пород обусловлена необходимостью проводить измерения в строго определенных условиях, оказывающих влияние на результаты измерений (степень насыщения образцов, минерализация насыщающего раствора, усилие прижима и вид электродов, интенсивность испарения флюидов с боковой поверхности образца и т. д.), которые не всегда выполняются. Естественно, что измерения УЭС в лабораториях нередко проводятся со значительными погрешностями, а результаты, полученные в различных лабораториях на одних и тех же образцах, трудносопоставимы.

Одной из причин недостаточного качества измерений УЭС горных пород в лабораторных условиях является тот факт, что до настоящего времени в отрасли практически отсутствует единая система метрологического обеспечения (МО) измерения УЭС горных пород, не во всех петрофизических подразделениях внедрены нормативнотехнические документы [1, 4], регламентирующие требования к аппаратуре и нормам точности измерений, отсутствует эталонная база для данного вида измерений.

В определенной мере существующие проблемы МО измерений УЭС могут быть решены путем разработки и изготовления стандартных образцов УЭС на основе стандартных образцов с известной открытой пористостью [3], насыщенных электролитом, применение которых может если не исключить, то, по крайней мере, свести к минимуму методические погрешности измерений.

В свое время во ВНИГИКе проводились экспериментальные исследования по измерению УЭС стандартных образцов открытой

пористости (СО-ОП), насыщенных раствором хлористого натрия, для оценки возможности использования СО-ОП в качестве стандартных образцов УЭС (СО-УЭС). В качестве основного критерия пригодности СО-ОП для использования их как СО-УЭС была принята стабильность УЭС во времени.

Экспериментальные исследования включали в себя две серии измерений:

серия 1: длительность испытаний – 16 дней (1–2 измерения в день), образцы N 1–7; концентрация раствора N aCl – 0,1H;

серия 2: длительность испытаний – 30 дней (1 измерение в день), образцы N_2 8–15; концентрация раствора NaCl – 0,5H.

В табл. 1 приведены значения коэффициентов пористости $k_{\rm II}$ исследованных СО-ОП.

Таблица 1 Значения коэффициентов пористости испытываемых образцов

Серия 1								
Номера образцов	1	2	3		4	5	6	7
k, %	3,44	9,88	10,	54	17,74	17,97	28,43	29,44
Серия 2								
Номера образцов	8	9	10	11	12	13	14	15
k, %	1,03	2,34	20,09	24,05	24,91	26,60	32,26	32,68

Методика проведения исследований заключалась в следующем. Образцы высушивались в сушильном шкафу при температуре $200-250~^{\circ}\mathrm{C}$ до постоянной массы, а затем покрывались клеем БФ по боковой поверхности и под вакуумом насыщались раствором хлористого натрия в дистиллированной воде. Образцы хранились в растворе в течение всего цикла измерений. Непосредственно перед измерением УЭС образца фиксировалась температура раствора. По известной температуре и концентрации раствора определялось его УЭС. Насыщенный образец помещался в кернодержатель; усилие прижима питающих электродов к торцам исследуемого образца поддерживалось постоянным и равным $0.5~M\Pi a$, питающий постоянный ток поддерживался в пределах 0.7-1.4~MA. Измерялось падение напряжения на образце ΔU_x и на эталонном сопротивлении ΔU_3 .

УЭС образца р определялось по формуле

$$\rho = R_9 \frac{\Delta U_x}{\Delta U_2} \cdot \frac{S}{L},\tag{1}$$

где R_3 — значение эталонного сопротивления, во всех экспериментах оно устанавливалось равным 10 000 Oм; L и S — длина и площадь поперечного сечения образца соответственно.

Поскольку значение УЭС зависит от температуры, целесообразно пользоваться параметром пористости P:

$$P = \frac{\rho}{\rho_{\rm p}},\tag{2}$$

где ρ_p – УЭС насыщающего раствора при данной температуре, определяется по справочным таблицам для заданных температур и концентраций раствора.

Для удобства оценки стабильности стандартных образцов, имеющих УЭС, отличающиеся на 2–3 порядка, использовались параметры $\overline{\rho}$ – относительное УЭС образца и \overline{P} – относительный параметр пористости:

$$\overline{\rho} = \frac{\rho}{\rho_{\text{max}}},\tag{3}$$

$$\overline{P} = \frac{P}{P_{\text{max}}},\tag{4}$$

где ρ_{\max} и P_{\max} — максимальные значения ρ и P в серии измерений для данного образца.

На рис. 1, 2 полученные данные проиллюстрированы в графическом виде. Выполненный анализ позволяет сделать следующие выводы:

1. Значения УЭС стандартных образцов коррелируются со значениями температуры – повышение температуры вызывает уменьшение УЭС. Так как обеспечить постоянство температуры практически невозможно, то использовать УЭС в качестве характеристики для оценки стабильности стандартных образцов не представляется возможным. Уменьшить влияние температуры для оценки стабильности стандартных образцов позволяет использование относительного параметра пористости \overline{P} .

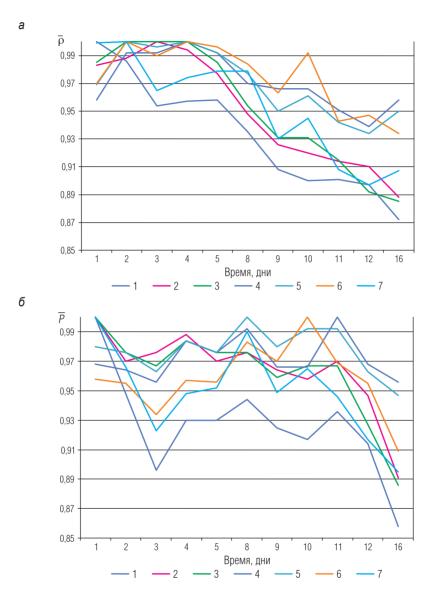


Рис. 1. Изменения относительного УЭС образцов $\overline{\rho}$ (a) и относительного параметра пористости образцов \overline{P} (б) со временем для первой серии измерений

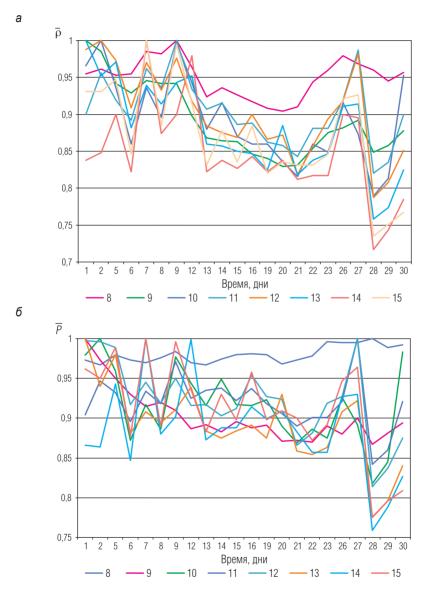


Рис. 2. Изменения относительного УЭС образцов $\overline{\rho}$ (a) и относительного параметра пористости образцов \overline{P} (б) со временем для второй серии измерений

2. Значения УЭС стандартных образцов имеют тенденцию к снижению с течением времени. Несмотря на почти полное отсутствие корреляции относительного параметра пористости \overline{P} с температурой, тенденция снижения \overline{P} со временем осталась, хотя и менее выражена. Темп снижения все-таки слишком высок, чтобы использовать испытываемые образцы как средства передачи размера физической величины.

Представляет интерес количественная оценка тенденции снижения относительного параметра пористости \overline{P} со временем. Для простоты будем искать модель дрейфа \overline{P} в классе линейных функций, используя для построения модели метод наименьших квадратов. При этом ширина полосы неопределенности определяется по формуле (при доверительной вероятности $P_{\rm д}=0.9$)

$$\Delta \overline{P} = 1.6\sigma_{\Delta P},\tag{5}$$

$$\sigma_{\Delta P} = \sqrt{\frac{\sum_{i=1}^{n} \left(\overline{P_i} - \hat{\overline{P_i}}\right)^2}{n}},$$
(6)

где $\sigma_{\Delta P}$ — среднеквадратическое отклонение, характеризующее рассеяние измеренных значений \overline{P} относительно модели; n — число измерений; \overline{P}_i — значения \overline{P} при $t=t_i$ (t — время); $\hat{\overline{P}_i}$ — значения \overline{P} при $t=t_i$, вычисленные по принятой модели:

$$\hat{\overline{P}} = \overline{P_0} + k \cdot t,\tag{7}$$

где k — коэффициент, характеризующий наклон линейного графика; \overline{P}_0 — значение относительного параметра пористости в начальный момент времени.

Значения $\Delta \overline{P}$ и коэффициента k, характеризующего стабильность параметра \overline{P} , представлены в табл. 2.

Как следует из табл. 2, часть образцов имеют неприемлемо низкую стабильность характеристики $\Delta \overline{P}$, при этом темп снижения может составлять 0,3—0,5% в день, что исключает возможность их использования в качестве эталонов.

Сказанное, однако, не означает, что разработка стандартных образцов УЭС для петрофизических исследований – тупиковый путь. Необходимы поиски новых конструктивных решений, например

использование монолитных образцов на основе проводящих полимеров, создание имитаторов образцов керна с заданными значениями УЭС и др.

Серия 1								
Номера образцов	1	2	3		4	5	6	7
<i>k,</i> % в день	-0,098	-0,49	2 -0,5	30 (0,032	-0,067	-0,005	-0,256
$\Delta \overline{P}$	0,045	0,021	0,02	23 (),021	0,020	0,035	0,40
Серия 2								
Номера образцов	8	9	10	11	12	13	14	15
<i>k,</i> % в день	0,081	-0,290	-0,300	-0,098	-0,290	0 -0,340	-0,032	-0,250
$\Delta \overline{P}$	0,012	0,034	0,051	0,030	0,013	0,050	0,071	0,060

ЛИТЕРАТУРА

- 1. ГОСТ 25494-82. Породы горные. Метод определения удельного электрического сопротивления.
- 2. Дахнов В. Н. Определение петрофизических характеристик по образцам. М.: Недра, 1977.
- 3. *Козыряцкий Н. Г.* Стандартные образцы для метрологического обеспечения измерений открытой пористости керна // НТВ "Каротажник". Тверь: Изд. АИС. 2009. Вып. 3 (180). С. 59–66.
- 4. ОСТ 41-03-219-83. Горная порода-коллектор. Методика определения УЭС образцов горных пород нефти и газа.
- 5. Поляков Е. А. Методика изучения физических свойств коллекторов нефти и газа. М.: Недра, 1981.

Рецензент канд. техн. наук, доц. А. В. Малинин

УДК 681.2.084: 621.891

Г. Б. Бурдо, Ю. А. Стрельников, С. А. Чаплыгин ООО "Нефтегазгеофизика" В. В. Измайлов Тверской ГТУ

ТРИБОТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СКОЛЬЗЯЩЕГО КОНТАКТА ДАТЧИКА ПЕРЕМЕЩЕНИЯ ПРИБОРА 4СКП

Приведены результаты исследований триботехнических и электрических характеристик резистивного датчика перемещения скважинного каверномерапрофилемера 4СКП в различных средах. Выявлены флуктуации силы трения, возникающей при работе исследуемого датчика, которые влияют на стабильность контактного сопротивления и, как следствие, на точность показаний прибора в целом.

Ключевые слова: скважина, резистивный датчик перемещения, каверномер-профилемер, сила трения, контактное сопротивление.

Введение

Резистивный датчик перемещения, исследованный в данной работе, используется в геофизическом приборе "каверномер-профилемер скважинный 4СКП", который выпускается ООО "Нефтегазгеофизика". Прибор работает в условиях повышенного внешнего гидростатического давления (до 140 *МПа*) и повышенной температуры (до 175 °C). Внутренний объем прибора заполнен маслом, на которое через компенсаторы передается внешнее избыточное давление. Таким образом, исследуемый датчик перемещения испытывает повышенные гидростатическое давление и температуру.

Прибор 4СКП предназначен для исследования геометрии ствола скважины по результатам измерения четырех независимых радиусов в двух взаимно перпендикулярных плоскостях. С его помощью решаются следующие задачи:

- вычисление диаметра скважины;
- поиск желобов;
- подсчет объема затрубного пространства скважины;
- контроль технического состояния скважины и др.

Схема датчика перемещения, входящего в состав прибора 4СКП, приведена на рис. 1.

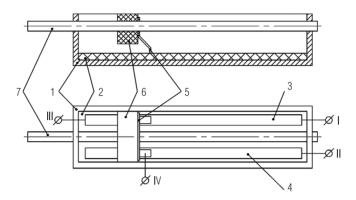


Рис. 1. Схема резистивного датчика перемещения

Датчик состоит из корпуса *I*, резистивного элемента *2*, на котором расположены высокоомная дорожка *3* и токосъемная дорожка с низким сопротивлением *4*. Щетка *5*, состоящая из 8 упругих элементов (по 4 на каждой ее стороне), соприкасающихся с дорожками *3* и *4*, закреплена на корпусе *6*, который в свою очередь зафиксирован на оси *7*. На выводы I и III дорожки *3* подается напряжение постоянного тока, а к выводам I и II подключен вольтметр. Когда ось с закрепленной на ней щеткой перемещается вдоль дорожек резистивного элемента, сопротивление между выводами I и II меняется, что и фиксируется вольтметром. Полученные данные пересчитываются электроникой прибора в величину линейного перемещения.

Таким образом, скользящий контакт, образованный резистивными дорожками и щеткой (рис. 1), является токопроводящим узлом трения, от постоянства контактного сопротивления которого зависит точность показаний прибора в целом. Поэтому целью работы явилось изучение контактного сопротивления и влияния на него триботехнических характеристик.

Экспериментальная установка и методика проведения исследования

В экспериментальной установке (рис. 2), с помощью которой определялись характеристики исследуемого скользящего контакта, частично использованы элементы реального датчика перемещения.

Установка состоит из каретки I с закрепленным на ней резистивным элементом 2, контактирующим со щеткой 3, зафиксированной на корпусе 5, который в свою очередь закреплен на оси 4. Ось соединяется с тензобалкой 6, на которой наклеены тензодатчики, с помощью приспособления 7 с установочными винтами 8. Детали 2-5 являются элементами исследуемого датчика перемещения прибора 4СКП.

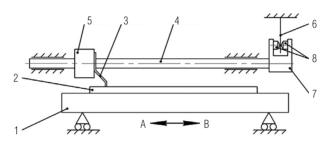


Рис. 2. Схема экспериментальной установки

При проведении эксперимента каретка совершает цикличные возвратно-поступательные движения относительно неподвижной оси, при этом щетка скользит по резистивному элементу. Длина хода каретки близка к величине рабочего хода скользящего контакта исследуемого датчика перемещения. Измерение сопротивления контакта резистивного элемента и щетки (рис. 2) производится по классической четырехпроводной схеме (рис. 3), позволяющей исключить посторонние сопротивления и измерять практически только сопротивление контакта. К выводам I и II подводится напряжение постоянного тока, а к выводу III и дополнительному выводу IV (в реальном устройстве он отсутствует) подключается вольтметр.

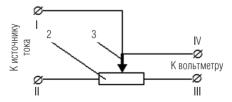


Рис. 3. Четырехпроводная схема измерения контактного сопротивления. Обозначения деталей те же, что на рис. 2

Параллельно в экспериментах с помощью самописца фиксируется сила трения, возникающая при скольжении щетки по резистивному элементу (рис. 2). Сигнал на самописец поступает от тензоусилителя, соединенного с тензодатчиками тензобалки. Сила трения, возникающая в опорах оси, измеряется отдельно и учитывается при обработке результатов.

Измерения проводились как в отсутствии смазочного материала между резистивным элементом и контактом, так и в среде лубриканта. В этом качестве использовалась кремнийорганическая жидкость 161-235 и масло ИПМ-10. Данные диэлектрические жидкости используются ООО "Нефтегазгеофизика" для наполнения внутреннего объема приборов для компенсации высоких внешних гидростатических давлений, в условиях которых работает геофизическая аппаратура. Для заполнения внутреннего объема прибора 4СКП, и в частности узла, в котором находится исследуемый датчик перемещения, применяется масло ИПМ-10.

Результаты экспериментов и их обсуждение

Фрикционные характеристики исследованного контакта приведены в табл. 1.

Таблица 1 Фрикционные характеристики скользящего контакта датчика перемещения

Характеристика	Без	Со смазочным материалом		
	смазочного материала	Масло ИПМ-10	Кремнийорганическая жидкость 161-235	
Коэффициент трения	0,60-0,62	0,30-0,55	0,35–0,65	
Относительная нестабильность коэффициента трения	0,41	0,5–0,8	0,8–1,1	

Сила трения при движении щетки по резистивному элементу (рис. 2) испытывает заметные флуктуации. В качестве примера на рис. 4 приведен фрагмент записи сигнала с тензоусилителя, который пропорционален величине силы трения.

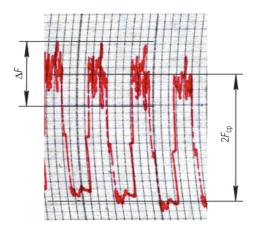


Рис. 4. Флуктуации силы трения при движении щетки по резистивному элементу: $2F_{\rm cp}$ – удвоенное среднее значение силы трения; ΔF – размах флуктуаций силы трения при движении каретки в направлении A на рис. 2

На рис. 4 хорошо видны флуктуации силы трения, причем размах флуктуаций различен при различных направлениях движения каретки (рис. 2). Этот факт можно объяснить особенностями конструкции устройства. При движении каретки в направлении А сила трения, возникающая при скольжении щетки по резистивному элементу, дополнительно прижимает ее упругие элементы к дорожке трения, а при движении в противоположном направлении (рис. 2, направление В), наоборот, сила трения уменьшает прижатие щетки к дорожке трения.

Коэффициент трения рассчитывался как отношение среднего значения силы трения $F_{\rm cp}$ (рис. 4) к нормальной силе N, прижимающей щетку к резистивному элементу (рис. 2). Нормальная сила N была определена экспериментально.

Относительная нестабильность коэффициента трения (табл. 1) представляет собой отношение размаха флуктуаций коэффициента трения в момент его очередного измерения к его среднему значению в данный момент $\Delta f/f_{\rm cp} = \Delta F/F_{\rm cp}$ (рис. 4). По сути это то, что в математической статистике называется коэффициентом осцилляции.

Значения коэффициента трения со смазочным материалом типичны для трения при граничной смазке. Как и следовало ожидать, смазочный материал снижает величину коэффициента трения по сравнению с трением без смазочного материала, хотя и не очень значительно.

Электрические характеристики исследованного контакта приведены в табл. 2.

Таблица 2 Электрические характеристики скользящего контакта датчика перемещения

Характеристика	Наименование смазочного материала			
	Масло ИПМ-10	Кремнийорганическая жидкость 161-235		
Контактное сопротивление, Ом	12,2–13,3	9,2–11,4		
Относительная нестабильность контактного сопротивления	0,25–0,55	0,31–0,66		

Контактное сопротивление определялось как частное от деления напряжения на контакте на силу тока через контакт, относительная нестабильность контактного сопротивления — как частное от деления размаха флуктуаций контактного сопротивления на его среднее значение в данный момент времени.

С ростом наработки среднее значение коэффициента трения остается практически постоянным, его величина в начале и в конце пути трения 250 м отличаются не более чем на 10%, причем наблюдаются изменения как в сторону увеличения, так и в сторону уменьшения. Относительная нестабильность коэффициента трения увеличивается в конце пути трения, равном 250 м. При трении в среде масла ИПМ-10 она увеличилась примерно на 40% по сравнению с начальным значением, в среде кремнийорганической жидкости 161-235 — примерно на 20%. Сопротивление контакта и его нестабильность также увеличиваются с ростом наработки. На том же пути трения контактное сопротивление увеличилось примерно на 20%, а его нестабильность — примерно на 60% (трение в среде кремнийорганической жидкости).

Для оценки проводящей способности скользящего контакта целесообразно сравнить экспериментальные значения сопротивления из табл. 2 с теоретическим значением. Сопротивление дискретного контакта шероховатых поверхностей можно рассчитать по формуле Р. Хольма [1]:

$$R = \frac{\rho_1 + \rho_2}{4na},\tag{1}$$

где ρ_1 и ρ_2 – удельные сопротивления материалов дорожки 3 и щетки 5 (рис. 1); n – число микроконтактов (число контактирующих выступов шероховатости); a – средний радиус единичной площадки контакта шероховатых поверхностей. Так как в данном случае $\rho_1 >> \rho_2$, формулу (1) можно записать в виде

$$R = \frac{\rho_1}{4na}.\tag{2}$$

По геометрическим размерам дорожки 3 (рис. 1) и ее общему сопротивлению рассчитанное значение $\rho_1 \approx (1.14-1.62) \cdot 10^{-3} \ Om \cdot M$.

Произведение na в формуле (2) можно оценить по величине фактической площади контакта A_r :

$$A_r = n\pi a^2,\tag{3}$$

а величину A_r , в свою очередь, можно приблизительно рассчитать по известной формуле [1]

$$A_r = N/H, (4)$$

где N — нормальная нагрузка на контакт; H — твердость материала дорожки 3 (рис. 1). Так как толщина щетки 5 составляет 0,12 m, что может быть соизмеримо с расстоянием между микронеровностями поверхности резистивной дорожки 3, предположим на каждом его упругом элементе одну площадку контакта (на каждой стороне щетки 5 по 4 упругих элемента). Тогда после несложных преобразований получаем

$$R = \frac{\rho}{4} \cdot \sqrt{\frac{\pi H}{nN}}.$$
 (5)

Измеренное значение твердости $H \approx 250~M\Pi a$, откуда по формуле (5) получаем при $N = 0.7~H~(70~cc)~R \approx 5-7~Om$, что разумно совпадает с экспериментальными значениями с учетом их флуктуаций (табл. 2) и присутствия граничных слоев смазочного материала на поверхности контакта, которое не учитывается формулами (2) – (5).

Выводы по результатом исследований

1. В целом, датчик сопротивления выполняет свою функцию, нестабильность контактного сопротивления приводит к весьма малой

- нестабильности общего сопротивления измерительной цепи прибора.
- 2. В условиях работы датчика сопротивления прибора нестабильность фрикционных и электрических параметров контакта определяется, в основном, шероховатостью щетки 5 и резистивных дорожек 3 и 4 (рис. 1) и применяемым материалом, играющим роль смазки.
- 3. Имеются возможности уменьшения нестабильности контактного сопротивления путем оптимизации триботехнических и конструктивных характеристик скользящего контакта (коэффициента трения, шероховатости контактирующих деталей в контакте, формы скользящей поверхности контакта 5 (рис. 1).

Практические результаты работы планируется апробировать на реальных приборах в OOO "Нефтегазгеофизика".

ЛИТЕРАТУРА

1. *Хольм Р.* Электрические контакты. М.: Изд-во иностранной литературы, 1961. 464 с.

Рецензент доктор хим. наук, проф. М. Г. Сульман